DRAFT BERTOLUCCI MIXED-USE DEVELOPMENT CONSTRUCTION COMMUNITY HEALTH RISK ASSESSMENT

South San Francisco, California

February 3, 2022

Prepared for:

Peter Sodini 421 Cypress Avenue South San Francisco, CA 94080

Prepared by:

Zachary Palm & James A. Reyff

ILLINGWORTH & RODKIN, INC.

Acoustics • Air Quality 429 East Cotati Avenue Cotati, CA 94931 (707) 794-0400

I&R Project#: 21-204

Introduction

The purpose of this report is to address the potential community risk impacts associated with the construction of the proposed multi-use building located at 209, 213 Lux Avenue and 421 Cypress Avenue in South San Francisco, California. The air quality impacts from this project would be associated with construction of the new buildings. Air pollutant emissions associated with construction of the project were predicted using appropriate computer models. In addition, the potential project construction health risk impacts and the impact of existing toxic air contaminant (TAC) sources affecting the nearby and proposed sensitive receptors were evaluated. The analysis was conducted following guidance provided by the Bay Area Air Quality Management District (BAAQMD).¹ BAAQMD recommends using a 1,000-foot screening radius around the project site for purposes of identifying community health risk from existing sources of TACs.

Project Description

The project site is comprised of three parcels at 209 and 213 Lux Avenue, and 421 Cypress Avenue which currently contains the existing Bertolucci's restaurant. The project proposes to demolish the existing restaurant building and construct 99 multi-family dwelling units above ground-level parking that provides 90 parking spaces inside and 9 parking spaces outside. The Bertolucci's restaurant will also be reconstructed within the same building, encompassing 1,500 square feet (sf) of the ground floor. Construction is proposed to begin in January 2023 and be completed by December 2023.

The Project is consistent with development that would occur as planned under the South San Francisco Downtown Station Area Specific Plan. Air quality impacts were evaluated under the South San Francisco Downtown Station Area Specific Plan EIR.² This project is subject to air quality mitigation measures associated with the South San Francisco Downtown Station Area Specific Plan EIR. This analysis addresses these mitigation requirements. Specifically:

- 1. **Mitigation Measure MM4.2-1** requires the emissions modeling of construction activities to identify appropriate mitigation measures to reduce emissions below significance criteria;
- 2. **Mitigation Measure MM4.2-2** requires quantification of operational emissions to demonstrate that adequate measures have been identified to reduce emissions; and
- 3. **Mitigation Measure MM4.2-3** requires a health risk assessment that assesses the impacts of air pollution sources that could affect the project's residents and, if necessary, identify appropriate measures to reduce the potential health risk to below significant level.

Setting

The project is located in San Mateo County, which is in the San Francisco Bay Area Air Basin. Ambient air quality standards have been established at both the State and federal level. The Bay

¹ Bay Area Air Quality Management District, CEQA Air Quality Guidelines, May 2017.

² City of South San Francisco Economic and Community Development Department. 2014. *Draft South San Francisco Downtown Station Area Specific Plan EIR SCH No. 2013102001*

Area meets all ambient air quality standards with the exception of ground-level ozone, respirable particulate matter (PM₁₀), and fine particulate matter (PM_{2.5}).

Air Pollutants of Concern

High ozone levels are caused by the cumulative emissions of reactive organic gases (ROG) and nitrogen oxides (NO_x). These precursor pollutants react under certain meteorological conditions to form high ozone levels. Controlling the emissions of these precursor pollutants is the focus of the Bay Area's attempts to reduce ozone levels. The highest ozone levels in the Bay Area occur in the eastern and southern inland valleys that are downwind of air pollutant sources. High ozone levels aggravate respiratory and cardiovascular diseases, reduced lung function, and increase coughing and chest discomfort.

Particulate matter is another problematic air pollutant of the Bay Area. Particulate matter is assessed and measured in terms of respirable particulate matter or particles that have a diameter of 10 micrometers or less (PM₁₀) and fine particulate matter where particles have a diameter of 2.5 micrometers or less (PM_{2.5}). Elevated concentrations of PM₁₀ and PM_{2.5} are the result of both region-wide (or cumulative) emissions and localized emissions. High particulate matter levels aggravate respiratory and cardiovascular diseases, reduce lung function, increase mortality (e.g., lung cancer), and result in reduced lung function growth in children.

Toxic Air Contaminants

Toxic air contaminants (TAC) are a broad class of compounds known to cause morbidity or mortality (usually because they cause cancer) and include, but are not limited to, the criteria air pollutants. TACs are found in ambient air, especially in urban areas, and are caused by industry, agriculture, fuel combustion, and commercial operations (e.g., dry cleaners). TACs are typically found in low concentrations, even near their source (e.g., diesel particulate matter [DPM] near a freeway). Because chronic exposure can result in adverse health effects, TACs are regulated at the regional, State, and federal level.

Diesel exhaust is the predominant TAC in urban air and is estimated to represent about threequarters of the cancer risk from TACs (based on the Bay Area average). According to the California Air Resources Board (CARB), diesel exhaust is a complex mixture of gases, vapors, and fine particles. This complexity makes the evaluation of health effects of diesel exhaust a complex scientific issue. Some of the chemicals in diesel exhaust, such as benzene and formaldehyde, have been previously identified as TACs by the CARB, and are listed as carcinogens either under the State's Proposition 65 or under the Federal Hazardous Air Pollutants programs.

Regulatory Setting

Federal Regulations

The United States Environmental Protection Agency (EPA) sets nationwide emission standards for mobile sources, which include on-road (highway) motor vehicles such trucks, buses, and

automobiles, and non-road (off-road) vehicles and equipment used in construction, agricultural, industrial, and mining activities (such as bulldozers and loaders). The EPA also sets nationwide fuel standards. California also has the ability to set motor vehicle emission standards and standards for fuel used in California, as long as they are the same or more stringent than the federal standards.

In the past decade the EPA has established a number of emission standards for on- and non-road heavy-duty diesel engines used in trucks and other equipment. This was done in part because diesel engines are a significant source of NO_X and particulate matter (PM₁₀ and PM_{2.5}) and because the EPA has identified DPM as a probable carcinogen. Implementation of the heavy-duty diesel on-road vehicle standards and the non-road diesel engine standards are estimated to reduce particulate matter and NO_X emissions from diesel engines up to 95 percent in 2030 when the heavy-duty vehicle fleet is completely replaced with newer heavy-duty vehicles that comply with these emission standards.³

In concert with the diesel engine emission standards, the EPA has also substantially reduced the amount of sulfur allowed in diesel fuels. The sulfur contained in diesel fuel is a significant contributor to the formation of particulate matter in diesel-fueled engine exhaust. The new standards reduced the amount of sulfur allowed by 97 percent for highway diesel fuel (from 500 parts per million by weight [ppmw] to 15 ppmw), and by 99 percent for off-highway diesel fuel (from about 3,000 ppmw to 15 ppmw). The low sulfur highway fuel (15 ppmw sulfur), also called ultra-low sulfur diesel (ULSD), is currently required for use by all vehicles in the U.S.

All of the above federal diesel engine and diesel fuel requirements have been adopted by California, in some cases with modifications making the requirements more stringent or the implementation dates sooner.

State Regulations

To address the issue of diesel emissions in the state, CARB developed the Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles.⁴ In addition to requiring more stringent emission standards for new on-road and off-road mobile sources and stationary diesel-fueled engines to reduce particulate matter emissions by 90 percent, a significant component of the plan involves application of emission control strategies to existing diesel vehicles and equipment. Many of the measures of the Diesel Risk Reduction Plan have been approved and adopted, including the federal on-road and non-road diesel engine emission standards for new engines, as well as adoption of regulations for low sulfur fuel in California.

CARB has adopted and implemented a number of regulations for stationary and mobile sources to reduce emissions of DPM. Several of these regulatory programs affect medium and heavy-duty diesel trucks that represent the bulk of DPM emissions from California highways. CARB regulations require on-road diesel trucks to be retrofitted with particulate matter controls or replaced to meet 2010 or later engine standards that have much lower DPM and PM_{2.5} emissions.

³ USEPA, 2000. *Regulatory Announcement, Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements*. EPA420-F-00-057. December.

⁴ California Air Resources Board, 2000. Risk Reduction Plan to Reduce Particulate Matter Emissions from Diesel-Fueled Engines and Vehicles. October.

This regulation will substantially reduce these emissions between 2013 and 2023. While new trucks and buses will meet strict federal standards, this measure is intended to accelerate the rate at which the fleet either turns over so there are more cleaner vehicles on the road or is retrofitted to meet similar standards. With this regulation, older, more polluting trucks would be removed from the roads sooner.

CARB has also adopted and implemented regulations to reduce DPM and NO_X emissions from inuse (existing) and new off-road heavy-duty diesel vehicles (e.g., loaders, tractors, bulldozers, backhoes, off-highway trucks, etc.). The regulations apply to diesel-powered off-road vehicles with engines 25 horsepower (hp) or greater. The regulations are intended to reduce particulate matter and NO_X exhaust emissions by requiring owners to turn over their fleet (replace older equipment with newer equipment) or retrofit existing equipment in order to achieve specified fleetaveraged emission rates. Implementation of this regulation, in conjunction with stringent federal off-road equipment engine emission limits for new vehicles, will significantly reduce emissions of DPM and NO_X.

Bay Area Air Quality Management District (BAAQMD)

BAAQMD has jurisdiction over an approximately 5,600-square mile area, commonly referred to as the San Francisco Bay Area (Bay Area). The District's boundary encompasses the nine San Francisco Bay Area counties, including Alameda County, Contra Costa County, Marin County, San Francisco County, San Mateo County, Santa Clara County, Napa County, southwestern Solano County, and southern Sonoma County.

BAAQMD is the lead agency in developing plans to address attainment and maintenance of the National Ambient Air Quality Standards and California Ambient Air Quality Standards. The District also has permit authority over most types of stationary equipment utilized for the proposed project. The BAAQMD is responsible for permitting and inspection of stationary sources; enforcement of regulations, including setting fees, levying fines, and enforcement actions; and ensuring that public nuisances are minimized.

BAAQMD's Community Air Risk Evaluation (CARE) program was initiated in 2004 to evaluate and reduce health risks associated with exposures to outdoor TACs in the Bay Area.⁵ The program examines TAC emissions from point sources, area sources, and on-road and off-road mobile sources with an emphasis on diesel exhaust, which is a major contributor to airborne health risk in California. The CARE program is an on-going program that encourages community involvement and input. The technical analysis portion of the CARE program is being implemented in three phases that includes an assessment of the sources of TAC emissions, modeling and measurement programs to estimate concentrations of TAC, and an assessment of exposures and health risks. Throughout the program, information derived from the technical analyses will be used to focus emission reduction measures in areas with high TAC exposures and high density of sensitive populations. Risk reduction activities associated with the CARE program are focused on the most at-risk communities in the Bay Area. Overburdened communities are areas located (i) within a census tract identified by the California Communities Environmental Health Screening Tool

⁵ See BAAQMD: <u>https://www.baaqmd.gov/community-health/community-health-protection-program/community-air-risk-evaluation-care-program</u>, accessed 2/18/2021.

(CalEnviroScreen), Version 4.0 implemented by OEHHA, as having an overall CalEnviroScreen score at or above the 70th percentile, or (ii) within 1,000 feet of any such census tract.⁶ The BAAQMD has identified six communities as impacted: Concord, Richmond/San Pablo, Western Alameda County, San José, Redwood City/East Palo Alto, and Eastern San Francisco. The project site is not within a CARE area and not within a BAAQMD overburdened area as identified by CalEnviroScreen.

The BAAQMD California Environmental Quality Act (*CEQA*) Air Quality Guidelines⁷ were prepared to assist in the evaluation of air quality impacts of projects and plans proposed within the Bay Area. The guidelines provide recommended procedures for evaluating potential air impacts during the environmental review process consistent with CEQA requirements including thresholds of significance, mitigation measures, and background air quality information. They also include assessment methodologies for air toxics, odors, and greenhouse gas emissions. Attachment 1 includes detailed community risk modeling methodology.

South San Francisco General Plan 1999

The South San Francisco General Plan 1999 includes guiding and implementing policies to reduce exposure of the City's sensitive population to exposure of air pollution, toxic air contaminants, and greenhouse gases. While the city is in the process of updating its general plan, the version passed in 1999 is still the most recent version. The following guiding and implementing policies are applicable to the proposed project:

GUIDING POLICIES: AIR QUALITY AND GREENHOUSE GAS EMISSIONS

- 7.3-G-1 Continue to work toward improving air quality and meeting all national and State ambient air quality standards and by reducing the generation of air pollutants both from stationary and mobile sources, where feasible.
- 7.3-G-2 Mitigate the community of South San Francisco's impact on climate change by reducing greenhouse gas emissions consistent with state guidance.
- 7.3-G-3 Reduce energy use in the built environment.
- 7.3-G-4 Encourage land use and transportation strategies that promote use of alternatives to the automobile for transportation, including bicycling, bus transit, and carpooling.
- 7.3-G-5 Promote clean and alternative fuel combustion in mobile equipment and vehicles.
- 7.3-G-6 Minimize conflicts between sensitive receptors and emissions generators by distancing them from one another.

⁶ See BAAQMD: <u>https://www.baaqmd.gov/~/media/dotgov/files/rules/reg-2-permits/2021-</u>

 $[\]underline{amendments/documents/20210722_01_appendixd_mapsofoverburdenedcommunities-pdf.pdf?la=en}\ ,\ accessed\ 10/1/2021.$

⁷ Bay Area Air Quality Management District, 2017. *CEQA Air Quality Guidelines*. May.

IMPLEMENTING POLICIES: AIR QUALITY AND GREENHOUSE GAS EMISSIONS

- 7.3-1-1 Cooperate with the Bay Area Air Quality Management District to achieve emissions reductions for nonattainment pollutants and their precursors, including carbon monoxide, ozone, and PM-10, by implementation of air pollution control measures as required by State and federal statutes.
- 7.3-1-2 Use the City's development review process and the California Environmental Quality Act (CEQA) regulations to evaluate and mitigate the local and cumulative effects of new development on air quality and GHG emissions.
- 7.3-1-3 Adopt the standard construction dust abatement measures included in BAAQMD's CEQA Guidelines.
- 7.3-1-4 Require new residential development and remodeled existing homes to install clean-burning fireplaces and wood stoves.
- 7.3-1-5 In cooperation with local conservation groups, institute an active urban forest management program that consists of planting new trees and maintaining existing ones.
- 7.3-1-6 Periodically update the inventory of community-wide GHG emissions and evaluate appropriate GHG emissions reduction targets, consistent with current State objectives, statewide guidance, and regulations.
- 7.3-1-7 Adopt and implement the City of South San Francisco's CAP, which will identify a GHG emissions reduction target and measures and actions to achieve the reduction target.
- 7.3-1-8 Evaluate and regularly report to City Council, or its designee, on the implementation status of the CAP and update the CAP as necessary should the City find that adopted strategies are not achieving anticipated reductions, or to otherwise incorporate new opportunities.
- 7.3-1-9 Promote land uses that facilitate alternative transit use, including high-density housing, mixed uses, and affordable housing served by alternative transit infrastructure.

Sensitive Receptors

There are groups of people more affected by air pollution than others. CARB has identified the following persons who are most likely to be affected by air pollution: children under 16, the elderly over 65, athletes, and people with cardiovascular and chronic respiratory diseases. These groups are classified as sensitive receptors. Locations that may contain a high concentration of these sensitive population groups include residential areas, hospitals, daycare facilities, elder care facilities, and elementary schools. For cancer risk assessments, children are the most sensitive

receptors, since they are more susceptible to cancer causing TACs. Residential locations are assumed to include infants and small children. The closest sensitive receptors to the project site are in the multi-family residences to the east of the project site, and the single-family residences to the north of the project site. This project would introduce new sensitive receptors (i.e., residents) to the area.

Significance Thresholds

In June 2010, BAAQMD adopted thresholds of significance to assist in the review of projects under CEQA and these significance thresholds were contained in the District's 2011 CEQA Air Quality Guidelines. These thresholds were designed to establish the level at which BAAQMD believed air pollution emissions would cause significant environmental impacts under CEQA. The thresholds were challenged through a series of court challenges and were mostly upheld. BAAQMD updated the CEQA Air Quality Guidelines in 2017 to include the latest significance thresholds, which were used in this analysis and are summarized in Table 1. Impacts above these thresholds are considered potentially significant.

	Construction Thresholds	Operational Thresholds				
Criteria Air		Average Daily	Annual Average			
Pollutant	Average Daily Emissions	Emissions	Emissions			
	(lbs./day)	(lbs./day)	(tons/year)			
ROG	54	54	10			
NO _x	54	54	10			
PM ₁₀	82 (Exhaust)	82	15			
PM _{2.5}	54 (Exhaust)	54	10			
СО	Not Applicable	9.0 ppm (8-hour average) or 20.0 ppm (1-hour average)				
Fugitive Dust	Construction Dust Ordinance or other Best Management Practices	or Not Applicable				
Health Risks and Hazards	Single Sources Within 1,000-foot Zone of Influence	Combined Sources (Cumulative from sources within 1,000-foot zone of influence)				
Excess Cancer Risk	10 per one million	100 per c	one million			
Hazard Index	1.0	1	0.0			
Incremental annual PM _{2.5}	0.3 μg/m ³	0.8	ug/m ³			
Greenhouse Gas Emiss	sions					
Land Use Projects – direct and indirect emissions	Compliance with a Qualified GHG Reduction Strategy OR 1,100 metric tons annually or 4.6 metric tons per capita (for 2020) *					
Note: ROG = reactive organic gases, NOx = nitrogen oxides, PM_{10} = course particulate matter or particulates with an aerodynamic diameter of 10 micrometers (µm) or less, $PM_{2.5}$ = fine particulate matter or particulates with an aerodynamic diameter of 2.5µm or less. GHG = greenhouse gases. *BAAQMD does not have a recommended post-2020 GHG threshold.						

Table 1.BAAQMD CEQA Significance Thresholds

Construction Community Risk Impacts and Mitigation Measures

MM4.2-1 Requirement - Project Construction Activity

Construction community risk impacts are addressed by predicting increased lifetime cancer risk, the increase in annual PM_{2.5} concentrations, and computing the Hazard Index (HI) for non-cancer health risks. Construction equipment and associated heavy-duty truck traffic generates diesel exhaust, which is a known TAC. These exhaust emissions pose health risks for sensitive receptors such as surrounding residents. The primary community risk impact issues associated with construction emissions are cancer risk and exposure to PM_{2.5}. A health risk assessment of the project construction activities was conducted that evaluated potential health effects to nearby sensitive receptors from construction emissions of DPM and PM_{2.5}.⁸ This assessment included dispersion modeling to predict the offsite and onsite concentrations resulting from project construction, so that lifetime cancer risks and non-cancer health effects could be evaluated. The methodology for computing community risks impacts is contained in *Attachment 1*.

Construction Period Emissions

The California Emissions Estimator Model (CalEEMod) Version 2020.4.0 was used to estimate emissions from on-site construction activity, construction vehicle trips, and evaporative emissions. The project land use types and size, and anticipated construction schedule were input to CalEEMod. The CARB EMission FACtors 2021 (EMFAC2021) model was used to predict emissions from construction traffic, which includes worker travel, vendor trucks, and haul trucks.⁹ The CalEEMod model output along with construction inputs are included in *Attachment 2* and EMFAC2021 vehicle emissions modeling outputs are included in *Attachment 3*.

CalEEMod Modeling

The proposed project land uses were entered into CalEEMod as described in Table 2.

Project Land Uses	Size	Units	Square Feet (sf)	Acreage				
Apartments Mid Rise	99	Dwelling Unit	119,257					
Enclosed Parking with Elevator	90	Parking Spaces	22,995	0.50				
Parking Lot	9	Parking Spaces	3,600	0.58				
Quality Restaurant	1.5	1,000-sf	1,500					

Table 2.Summary of Project Land Use Inputs

CalEEMod computes annual emissions for construction that are based on the project type, size, and acreage. The model provides emission estimates for both on-site and off-site construction activities. On-site activities are primarily made up of construction equipment emissions, while off-site activity includes worker, hauling, and vendor traffic. The construction build-out scenario,

⁸ DPM is identified by California as a toxic air contaminant due to the potential to cause cancer.

⁹ See CARB's EMFAC2021 Emissions Inventory at <u>https://arb.ca.gov/emfac/emissions-inventory</u>.

including equipment list and schedule, were based on CalEEMod defaults that were reviewed and slightly modified by the applicant.

The construction equipment worksheets provided by the applicant included the schedule for each phase. Within each phase, the quantity of equipment to be used, average hours per day, and total number of workdays was provided by the applicant. Since different equipment would have different estimates of the working days per phase, the hours per day for each phase was computed by dividing the total number of hours that the equipment would be used by the total number of days in that phase. The construction schedule assumed that the earliest possible start date would be January 2023 and would be built out over a period of approximately 12 months, or 259 construction workdays. The earliest year of full operation was assumed to be 2024.

Construction Truck Traffic Emissions

Construction would produce traffic in the form of worker trips and truck traffic. The traffic-related emissions are based on worker and vendor trip estimates produced by CalEEMod and haul trips that were computed based on the estimate of soil material imported and/or exported to the site and the estimate of cement and asphalt truck trips. CalEEMod provides daily estimates of worker and vendor trips for each applicable phase. The total trips for those were computed by multiplying the daily trip rate by the number of days in that phase. Haul trips for demolition and grading were estimated from the anticipated grading volumes by assuming each truck could carry 10 tons per load. The number of concrete and asphalt total round haul trips were estimated for the project and converted to total one-way trips, assuming two trips per delivery.

The latest version of the CalEEMod model is based on the older version of the CARB EMFAC2017 motor vehicle emission factor model. This model has been superseded by the EMFAC2021 model; however, CalEEMod has not been updated to include EMFAC2021. Therefore, the construction traffic information was combined with EMFAC2021 motor vehicle emissions factors. EMFAC2021 provides aggregate emission rates in grams per mile for each vehicle type. The vehicle mix for this study was based on CalEEMod default assumptions, where worker trips are assumed to be comprised of light-duty autos (EMFAC category LDA) and light duty trucks (EMFAC category LDT1 and LDT2). Vendor trips are comprised of delivery and large trucks (EMFAC category MHDT and HHDT) and haul trips, including cement trucks, are comprised of large trucks (EMFAC category HHDT). Travel distances are based on CalEEMod default lengths, which are 10.8 miles for worker travel, 7.3 miles for vendor trips and 20 miles for hauling (soil import/export). Since CalEEMod does not address cement trucks, these were treated as vendor travel distances. Each trip was assumed to include an idle time of 5 minutes. Emissions associated with vehicle starts were also included. On road emissions in San Mateo County for 2023 was used in these calculations. Table 3 provides the traffic inputs that were combined with the EMFAC2021 emission database to compute vehicle emissions.

CalEEMod Run/Land		Trips by Tri					
Uses and Construction Phase	Total Worker ¹	Total Vendor ¹	Total Haul ²	Notes			
Vehicle mix ¹	50% LDA 25% LDT1 25% LDT2	50% MHDT 50% HHDT	100% HHDT				
Trip Length (miles)	10.8	7.3	20.0	CalEEMod default distance with 5-min truck idle time.			
Demolition	260	-	96	13,000-sf building demo. CalEEMod default worker trips.			
Site Preparation	24	-	-	CalEEMod default worker trips.			
Grading	60	-	1,425	9,400-cy soil export. 2,000- cy soil import. CalEEMod default worker trips.			
Trenching	150	-	-	CalEEMod default worker trips.			
Building Construction	18,260	3,300	210	Est 23,600-sf concrete. CalEEMod default worker and vendor trips.			
Architectural Coating	170	-	-	CalEEMod default worker trips.			
Paving	150	-	31	Est. 32,670-sf asphalt. CalEEMod default worker trips.			
Notes: ¹ Based on 2023 EMFAC2021 light-duty vehicle fleet mix for San Mateo County. ² Includes demolition trips estimated by CalEEMod based on amount of material to be removed. Cement and asphalt trips estimated based on project size and land uses.							

Table 3.Construction Traffic Data Used for EMFAC2021 Model Runs

Summary of Computed Construction Period Emissions

Average daily emissions were annualized for each year of construction by dividing the annual construction emissions and dividing those emissions by the number of active workdays during that year. Table 4 shows the annualized average daily construction emissions of ROG, NO_X, PM₁₀ exhaust, and PM_{2.5} exhaust during construction of the project. As indicated in Table 4, predicted annualized project construction emissions would not exceed the BAAQMD significance thresholds during any year of construction.

Table 4.Construction Period Emissions

Year	ROG	NOx	PM ₁₀ Exhaust	PM _{2.5} Exhaust		
Construction Emissions Per Year (Tons)						
2023	1.10	2.00	0.09	0.08		
Average Daily Constru	ction Emissions	Per Year (pound:	s/day)			
2023 (259 construction workdays)	8.49	15.47	0.73	0.64		
BAAQMD Thresholds (pounds per day)	54 lbs./day	54 lbs./day	82 lbs./day	54 lbs./day		
Exceed Threshold?	No	No	No	No		

Construction activities, particularly during site preparation and grading, would temporarily generate fugitive dust in the form of PM₁₀ and PM_{2.5}. Sources of fugitive dust would include disturbed soils at the construction site and trucks carrying uncovered loads of soils. Unless properly controlled, vehicles leaving the site would deposit mud on local streets, which could be an additional source of airborne dust after it dries. The BAAQMD CEQA Air Quality Guidelines consider these impacts to be less-than-significant if best management practices are implemented to reduce these emissions. Per MM4.2-1 of the South San Francisco Downtown Station Area Specific Plan EIR, BAAQMD *Basic Construction Mitigation Measures* would apply to this project since construction period emissions would be below the City-adopted thresholds that are contained in the BAAQMD CEQA Air Quality Guidelines. The following *BAAQMD-recommended best management practices* apply to this project:

- 1. All exposed surfaces (e.g., parking areas, staging areas, soil piles, graded areas, and unpaved access roads) shall be watered two times per day.
- 2. All haul trucks transporting soil, sand, or other loose material off-site shall be covered.
- 3. All visible mud or dirt track-out onto adjacent public roads shall be removed using wet power vacuum street sweepers at least once per day. The use of dry power sweeping is prohibited.
- 4. All vehicle speeds on unpaved roads shall be limited to 15 miles per hour (mph).
- 5. All roadways, driveways, and sidewalks to be paved shall be completed as soon as possible. Building pads shall be laid as soon as possible after grading unless seeding or soil binders are used.
- 6. Idling times shall be minimized either by shutting equipment off when not in use or reducing the maximum idling time to 5 minutes (as required by the California airborne toxics control measure Title 13, Section 2485 of California Code of Regulations [CCR]). Clear signage shall be provided for construction workers at all access points.
- 7. All construction equipment shall be maintained and properly tuned in accordance with manufacturer's specifications. All equipment shall be checked by a certified mechanic and determined to be running in proper condition prior to operation.
- 8. Post a publicly visible sign with the telephone number and person to contact at the Lead Agency regarding dust complaints. This person shall respond and take corrective action within 48 hours. The Air District's phone number shall also be visible to ensure compliance with applicable regulations.

Community Health Risk from Project Construction

Construction Emissions

The CalEEMod model and EMFAC2021 emissions provided total annual PM_{10} exhaust emissions (assumed to be DPM) for the off-road construction equipment and for exhaust emissions from onroad vehicles, with total emissions from all construction stages as 0.08 tons (165 pounds). The onroad emissions are a result of haul truck travel during grading activities, worker travel, and vendor deliveries during construction. A trip length of one mile was used to represent vehicle travel while at or near the construction site. It was assumed that these emissions from on-road vehicles traveling at or near the site would occur at the construction site. Fugitive $PM_{2.5}$ dust emissions were calculated by CalEEMod as 0.02 tons (35 pounds) for the overall construction period.

Dispersion Modeling

The U.S. EPA AERMOD dispersion model was used to predict concentrations of DPM and PM_{2.5} concentrations at sensitive receptors in the vicinity of the project construction area. The AERMOD dispersion model is a BAAQMD-recommended model for use in modeling analysis of these types of emission activities for CEQA projects.¹⁰ Emission sources for the construction site were grouped into two categories: exhaust emissions of DPM and fugitive PM_{2.5} dust emissions.

Combustion equipment DPM exhaust emissions were modeled as a series of point sources with a nine-foot release height (construction equipment exhaust stack height) placed at 23 feet (7 meter) intervals throughout the construction site. This resulted in 60 individual point sources being used to represent mobile equipment DPM exhaust emissions in the respective construction area, with DPM emissions occurring throughout the project construction site. In addition, the following stack parameters were used: a vertical release, a stack diameter of 2.5 inches, an exhaust temperature of 918°F, and an exit velocity of 309 feet per second. Since these are point sources plume rise is calculated by the AERMOD dispersion model. Emissions from vehicle travel on- and off-site were also distributed among the point sources throughout the site. The locations of the point sources used for the modeling are identified in Figure 1.

For modeling fugitive PM_{2.5} emissions, a near-ground level release height of 7 feet (2 meters) was used for the area source. Fugitive dust emissions at construction sites come from a variety of sources, including truck and equipment travel, grading activities, truck loading (with loaders) and unloading (rear or bottom dumping), loaders and excavators moving and transferring soil and other materials, etc. All of these activities result in fugitive dust emissions at various heights at the point(s) of generation. Once generated, the dust plume will tend to rise as it moves downwind across the site and exit the site at a higher elevation than when it was generated. For all these reasons, a 7-foot release height was used as the average release height across the construction site. Emissions from the construction equipment and on-road vehicle travel were distributed throughout the modeled area sources.

¹⁰ Bay Area Air Quality Management District (BAAQMD), 2012, *Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0.* May.

The modeling used a five-year data set (2013 - 2017) of hourly meteorological data from the San Francisco International Airport was used with the AERMOD model. Construction emissions were modeled as occurring daily between 8:00 a.m. to 5:00 p.m., when the majority of construction activity is expected to occur. Annual DPM and PM2.5 concentrations from construction activities during the 2023 period were calculated using the model. DPM and PM2.5 concentrations were calculated at nearby sensitive receptors. Receptor heights of 5 feet (1.5 meters), 15 feet (4.5 meters), and 25 feet (7.6 meters) were used to represent the breathing height on the first, second, and third floor of nearby single and multi-family residences.¹¹

Summary of Construction Community Risk Impacts

The maximum increased cancer risks were calculated using the modeled TAC concentrations combined with the Office of Environmental Health Hazard Assessment (OEHHA) guidance for age sensitivity factors and exposure parameters as recommended by BAAQMD (see Attachment 1). Non-cancer health hazards and maximum PM_{2.5} concentrations were also calculated and identified. Age-sensitivity factors reflect the greater sensitivity of infants and small children to cancer causing TACs. Infant, child, and adult exposures were assumed to occur at all residences during the entire construction period.

The maximum modeled annual PM2.5 concentration was calculated based on combined exhaust and fugitive concentrations. The maximum computed HI value was based on the ratio of the maximum DPM concentration modeled and the chronic inhalation referce exposure level of 5 μ g/m³.

The maximum-modeled annual DPM and PM_{2.5} concentrations, which includes both the DPM and fugitive PM_{2.5} concentrations, were identified at nearby sensitive receptors (as shown in Figure 1) to find the maximally exposed individuals (MEI). Results of this assessment indicated that the construction residential MEI was located on the second floor (15 feet above ground) of the adjacent multi-family home east of the construction project site. Table 5 summarizes the maximum cancer risks, PM_{2.5} concentrations, and health hazard indexes for project related construction activities affecting the construction MEI. Attachment 4 to this report includes the emission calculations used for the construction area source modeling and the cancer risk calculations.

Table 5. Cons	struction Risk Impacts at the Off-s	site NIEI		
	Source	Cancer Risk (per million)	Annual PM _{2.5} (µg/m ³)	Hazar Index
	Project Impact			
Project Construction	Unmitigated	62.82 (infant)	0.45	0.07
	Mitigated	3.83 (infant)	0.07	< 0.01
	BAAQMD Single-Source Threshold	10	0.3	1.0
Exceed Threshold?	Unmitigated	Yes	Yes	No
	Mitigated	No	No	No

*Tier 4 Interim, Best Management Practices, and electric welders used as mitigation.

¹¹ Bay Area Air Quality Management District, 2012, Recommended Methods for Screening and Modeling Local Risks and Hazards, Version 3.0. May. Web: https://www.baaqmd.gov/~/media/files/planning-andresearch/ceqa/risk-modeling-approach-may-2012.pdf?la=en

Figure 1. Locations of Project Construction Site, DPM Point Sources, Off-Site Sensitive Receptors, and Maximum TAC Impact

Cumulative Community Risks of all TAC Sources at the Offsite Project MEI

Community health risk assessments typically look at all substantial sources of TACs that can affect sensitive receptors that are located within 1,000 feet of a project site (i.e., influence area). These sources include rail lines, highways, busy surface streets, and stationary sources identified by BAAQMD.

In lieu of a project specific cumulative community risk assessment, the cumulative community risk assessments for nearby projects have been evaluated and applied to this analysis. The closest nearby project site is the VMAP – Miller Parcels B and C Combined project analysis performed by *Illingworth & Rodkin, Inc.* in December of 2017 (VMAP). The project site in this analysis is across Tamarack Lane, approximately 30 feet north, from the aforementioned VMAP project and, therefore, would have similar on-site exposure as the VMAP project. Further, since this project's off-site MEI is nearly equidistant from TAC sources (i.e., Airport Boulevard, Grand Avenue, Highway 101, and CalTrain) as the off-site MEI from the VMAP project, exposure to those TAC sources will be similar at each MEI.

Figure 2. Project Site and Nearby TAC and PM_{2.5} Sources

Highways & Railways – U.S. Highway 101, CalTrain Zone 1

The project MEI is approximately 250 feet west of U.S. Highway 101 and approximately 700 feet northwest of CalTrain Zone 1. The VMAP project modeled impacts from U.S. 101 and Caltrain at slightly closer distances for VMAP Parcel A along Airport Blvd near U.S. 101. The project site and the MEI are setback further; therefore, the exposure from Highway 101 and Caltrain Zone 1 on this project's MEI are expected to be lower than the exposure modeled in the VMAP project. Traffic levels modeled for the VMAP project using 2014 Caltrans traffic counts are similar or lower than traffic levels on U.S. 101 in 2019 (pre-pandemic) and 2020 (during the pandemic). As such, the health risks from Highway 101 based on the VMAP project that affect this project MEI account for current traffic on the highway.

Local Roadways – Airport Boulevard & Grand Avenue

The project MEI is approximately 150 feet west of Airport Boulevard and approximately 575 feet Similar to Highway 101, the project MEI is a similar distance away from Airport Boulevard and Grand Avenue as the MEI in the VMAP project.

BAAQMD Permitted Stationary Sources

Permitted stationary sources of air pollution near the project site were identified using BAAQMD's *Permitted Stationary Sources 2018* geographic information system (GIS) map website.¹² This mapping tool identifies the location of nearby stationary sources and their estimated risk and hazard impacts. Five sources were identified using this tool, three auto body coating operations and two gas dispensing facilities. A stationary source information request was required as the BAAQMD GIS website did not provide screening risks and hazards for all sources.

The screening level risks and hazards provided by BAAQMD for the stationary sources were adjusted for distance using BAAQMD's *Distance Adjustment Multiplier Tool for Diesel Internal Combustion Engines and Gasoline Dispending Facilities*. Community risk impacts from the stationary source upon the MEI are reported in Table 6.

Summary of Cumulative Health Risk Impact at Construction MEI

Table 6 reports both the project and cumulative community risk impacts at the sensitive receptors most affected by construction (i.e. the MEI). The project would have an exceedance with respect to community risk caused by project construction activities, since the maximum annual $PM_{2.5}$ concentration does exceed the BAAQMD single-source and cumulative-source thresholds. However, with mitigation, the annual $PM_{2.5}$ concentration is reduced below both thresholds.

¹² BAAQMD, Web: https://baaqmd.maps.arcgis.com/apps/webappviewer/index.html?id=2387ae674013413f987b1071715daa65

Source	Cancer Risk (per million)	Annual PM _{2.5} (µg/m ³)	Hazard Index	
	Project Impacts			
Project Construction	Unmitigated	62.82 (infant)	0.45	0.07
	Mitigated	3.83 (infant)	0.07	< 0.01
BAAQMD S	ingle-Source Threshold	10	0.3	1.0
Exceed Threshold?	Unmitigated	Yes	Yes	No
	Mitigated	No	No	No
	Cumulative Impac	ts		
Highway 101		8.24	0.3	0.01
CalTrain Zone 1		0.86	0.01	0.01
Airport Boulevard		1.82	0.04	0.01
Grand Avenue		0.75	0.02	0.03
NOD Auto Body Shop Inc (Facility ID	#15132, Auto Body	-	-	< 0.01
Coating Operation), MEI at 1000 feet	120215 A (D 1			
Coating Operation), MEI at 150 feet	#20215, Auto Body	-	-	< 0.01
Unocal #1020—Grand Martco Inc (Fac	ility ID #109214, Gas	0.54		<0.01
Dispensing Facility), MEI at 775 feet		0.54	-	<0.01
Chico's Service Station (Facility ID #20	00891, Gas Dispensing	0.39	-	< 0.01
Facility), MEI at 670 feet				
A&K Supreme Auto (Facility ID #2010	62, Auto Body Coating	-	-	< 0.01
Operation), MEI at 190 feet	TT '4' 4 1	75.40 (* 6)	0.04	-0.10
Cumulative I otal	Unmitigated	15.42 (infant)	0.84	<0.18
	Mitigated	10.43 (infant)	0.46	<0.12
BAAQMD Cumu	lative Source Threshold	100	0.8	10.0
Exceed Threshold?	Unmitigated	No	Yes	No
	Mitigated	No	No	No

Table 6.Impacts from Combined Sources at Project MEI

Additional Construction Mitigation for MM4.2-1

Implement the following measures to reduce diesel particulate matter emissions by 85 percent such that increased cancer risk and annual PM_{2.5} concentrations from construction would be reduced below TAC significance levels as follows:

- 1. All construction equipment larger than 25 horsepower used at the site for more than two continuous days or 20 hours total shall meet U.S. EPA Tier 4 emission standards for PM (PM₁₀ and PM_{2.5}), if feasible, otherwise,
 - a. If use of Tier 4 equipment is not available, alternatively use equipment that meets U.S. EPA emission standards for Tier 3 engines and include particulate matter emissions control equivalent to CARB Level 3 verifiable diesel emission control devices that altogether achieve a 85 percent reduction in particulate matter exhaust in comparison to uncontrolled equipment; alternatively (or in combination).
 - b. Use of electrical or non-diesel fueled equipment.

- 2. Alternatively, the applicant may develop another construction operations plan demonstrating that the construction equipment used on-site would achieve a reduction in construction diesel particulate matter emissions by 85 percent or greater. Elements of the plan could include a combination of some of the following measures:
 - Implementation of No. 1 above to use Tier 4 or alternatively fueled equipment,
 - Installation of electric power lines during early construction phases to avoid use of diesel generators and compressors,
 - Use of electrically-powered equipment,
 - Forklifts and aerial lifts used for exterior and interior building construction shall be electric or propane/natural gas powered,
 - Change in construction build-out plans to lengthen phases, and
 - Implementation of different building techniques that result in less diesel equipment usage.

Such a construction operations plan would be subject to review by an air quality expert and approved by the City prior to construction.

Effectiveness of MM4.2-1

CalEEMod was used to compute emissions associated with this mitigation measure assuming that all equipment met U.S. EPA Tier 4 interim engines standards, BAAQMD best management practices for construction, and electrified welders were included. With these implemented, the project's cancer risk levels (assuming infant exposure) and annual PM_{2.5} concentrations would be reduced to 3.83 per million with use of Tier 4 equipment. Assuming a lesser level of mitigation that achieves a 85-percent reduction, increased cancer risks would be reduced to below 10 chances per million. As a result, the project's construction risks would be reduced below the BAAQMD single-source thresholds.

Operational Air Quality Impacts and Mitigation Measures

Mitigation Measure MM4.2-2 Operational Air Pollutant Emissions

This mitigation measure requires quantification of operational emissions to demonstrate that adequate measures have been identified to reduce project air pollutant emissions. The CalEEMod model that was used to compute construction air pollutant emissions was also used to compute operational emissions. The model was run with default inputs for the project land use and types describe previously for the construction emissions. CalEEMod provided annual emissions in tons. These were divided by 365 days to compute average daily emissions. Table 7 reports operational emissions from the project. Operational emissions are below thresholds so no measures to reduce air pollutant emissions from project operation are required.

			PM ₁₀	PM _{2.5}
Description	ROG	NOx	Exhaust	Exhaust
2024 Annual emissions in tons	1.10	0.28	0.54	0.19
BAAQMD Thresholds (tons per year)	10	10	15	10
Average Daily Emissions (pounds per day)	5.7	1.5	3.0	1.0
BAAQMD Thresholds (pounds per day)	54	54	82	54
Exceed Threshold?	No	No	No	No

Table 7. Project Operation Air Pollutant Emissions

On-site Community Risk Assessment for TAC Sources - New Project Residences

Mitigation Measure MM4.2-3 TAC Sources Affecting the Project

In addition to evaluating health impact from project construction, a health risk assessment was completed to determine the impact that existing TAC sources would have on the new proposed sensitive receptors (residents) that the project would introduce. The same TAC sources identified above were used in this health risk assessment.¹³

Highways & Railways – U.S. Highway 101, CalTrain Zone 1

The highway and railway analysis for the project residents was conducted in the same manner as described above for evaluating the off-site MEI for construction impacts as part of MM4.2-1.

Local Roadways - Airport Boulevard & Grand Avenue

The roadway analysis for the project residents was conducted in the same manner as described above for evaluating the off-site MEI for construction impacts as part of MM4.2-1.

Stationary Sources

The stationary source screening analysis for the new project sensitive receptors was conducted in the same manner as described above for evaluating the off-site MEI for construction impacts as part of MM4.2-1. Table 8 shows the health risk screening assessment results from the stationary sources.

Summary of Cumulative Community Risks at the Project Site

Community risk impacts from the existing and TAC sources upon the project site are reported in Table 8. The risks from the singular TAC sources are compared against the BAAQMD single-source threshold. The risks from all the sources are then combined and compared against the BAAQMD cumulative-source threshold. As shown, none of the sources exceed the single-source or cumulative-source thresholds.

¹³ We note that to the extent this analysis considers *existing* air quality issues in relation to the impact on *future residents* of the Project, it does so for informational purposes only pursuant to the judicial decisions in *CBIA v. BAAQMD* (2015) 62 Cal.4th 369, 386 and *Ballona Wetlands Land Trust v. City of Los Angeles* (2011) 201 Cal.App.4th 455, 473, which confirm that the impacts of the environment on a project are excluded from CEQA unless the project itself "exacerbates" such impacts.

Figure 3. Project Site and Nearby Cumulative Sources

Additional Operational Mitigation Requirements under MM4.2-3

No additional measures are necessary since health risk levels do not exceed single- or cumulativesource thresholds at the project site where sensitive receptors would be located.

The 2019 Building Energy Efficiency Standards of the State's Building code (Title 24) require the installation of heating/cooling ventilation systems equipped with Minimum efficiency reporting value (MERV) 13, or equivalent. A properly operating ventilation system with MERV13 filtration and closed/sealed windows would reduce indoor particulate matter levels. The effect of these new building code requirements was not accounted for in this study. Thus, particulate matter levels and cancer risk for occupants of the project is expected to be lower than reported in Table 8.

	Maximum	Maximum	Maximum
Source	Cancer Risk	Annual PM ₂₅	Hazard
	(per million)	$(\mu g/m^3)$	Index
Highway 101	8.24	<0.3	0.01
CalTrain Zone 1	1.18	0.01	0.01
Airport Boulevard	1.93	0.11	0.04
Grand Avenue	1.50	0.01	0.04
NOD Auto Body Shop Inc (Facility ID #15132, Auto Body Coating Operation), MEI at 1000 feet	-	-	< 0.01
NOD Auto Body Shop Inc (Facility ID #20215, Auto Body Coating Operation), MEI at 150 feet	-	-	<0.01
Unocal #1020—Grand Martco Inc (Facility ID #109214, Gas Dispensing Facility), MEI at 775 feet	0.69	-	<0.01
Chico's Service Station (Facility ID #200891, Gas Dispensing Facility), MEI at 670 feet	0.88	-	<0.01
A&K Supreme Auto (Facility ID #201062, Auto Body Coating Operation), MEI at 190 feet	-	-	< 0.01
BAAQMD Single-Source Threshold	10	0.3	1.0
Exceed Threshold?	No	No	No
Cumulative Total	14.42	0.43	< 0.15
BAAQMD Cumulative Source Threshold	100	0.8	10.0
Exceed Threshold?	No	No	No

 Table 8.
 Impacts from Combined Sources to Project Site Receptors

Supporting Documentation

Attachment 1 is the methodology used to compute community risk impacts, including the methods to compute lifetime cancer risk from exposure to project emissions.

Attachment 2 includes the CalEEMod output for project construction emissions. Also included are any modeling assumptions.

Attachment 3 includes the EMFAC2021 emissions modeling. The input files for these calculations are voluminous and are available upon request in digital format.

Attachment 4 is the construction health risk assessment. This includes the summary of the dispersion modeling and the cancer risk calculations for construction. AERMOD dispersion modeling files for this assessment, which are quite voluminous, are available upon request and would be provided in digital format

Attachment 5 includes the cumulative community risk calculations, modeling results, and health risk calculations from sources affecting the construction MEI and project site receptors.

Attachment 1: Health Risk Calculation Methodology

A health risk assessment (HRA) for exposure to Toxic Air Contaminates (TACs) requires the application of a risk characterization model to the results from the air dispersion model to estimate potential health risk at each sensitive receptor location. The State of California Office of Environmental Health Hazard Assessment (OEHHA) and California Air Resources Board (CARB) develop recommended methods for conducting health risk assessments. The most recent OEHHA risk assessment guidelines were published in February of 2015.¹⁴ These guidelines incorporate substantial changes designed to provide for enhanced protection of children, as required by State law, compared to previous published risk assessment guidelines. CARB has provided additional guidance on implementing OEHHA's recommended methods.¹⁵ This HRA used the 2015 OEHHA risk assessment guidelines and CARB guidance. The BAAQMD has adopted recommended procedures for applying the newest OEHHA guidelines as part of Regulation 2, Rule 5: New Source Review of Toxic Air Contaminants.¹⁶ Exposure parameters from the OEHHA guidelines and the recent BAAQMD HRA Guidelines were used in this evaluation.

Cancer Risk

Potential increased cancer risk from inhalation of TACs is calculated based on the TAC concentration over the period of exposure, inhalation dose, the TAC cancer potency factor, and an age sensitivity factor to reflect the greater sensitivity of infants and children to cancer causing TACs. The inhalation dose depends on a person's breathing rate, exposure time and frequency and duration of exposure. These parameters vary depending on the age, or age range, of the persons being exposed and whether the exposure is considered to occur at a residential location or other sensitive receptor location.

The current OEHHA guidance recommends that cancer risk be calculated by age groups to account for different breathing rates and sensitivity to TACs. Specifically, they recommend evaluating risks for the third trimester of pregnancy to age zero, ages zero to less than two (infant exposure), ages two to less than 16 (child exposure), and ages 16 to 70 (adult exposure). Age sensitivity factors (ASFs) associated with the different types of exposure are an ASF of 10 for the third trimester and infant exposures, an ASF of 3 for a child exposure, and an ASF of 1 for an adult exposure. Also associated with each exposure type are different breathing rates, expressed as liters per kilogram of body weight per day (L/kg-day) or liters per kilogram of body weight per 8-hour period for the case of worker or school child exposures. As recommended by the BAAQMD for residential exposures, 95th percentile breathing rates are used for the third trimester and infant exposures. BAAQMD recommends using the 95th percentile 8-hour breathing rates. Additionally, CARB and the BAAQMD recommend the use of a residential exposure duration of

¹⁴ OEHHA, 2015. Air Toxics Hot Spots Program Risk Assessment Guidelines, The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. Office of Environmental Health Hazard Assessment. February.

¹⁵ CARB, 2015. Risk Management Guidance for Stationary Sources of Air Toxics. July 23.

¹⁶ BAAQMD, 2016. BAAQMD Air Toxics NSR Program Health Risk Assessment (HRA) Guidelines. December 2016.

30 years for sources with long-term emissions (e.g., roadways). For workers, assumed to be adults, a 25-year exposure period is recommended by the BAAQMD. For school children a 9-year exposure period is recommended by the BAAQMD.

Under previous OEHHA and BAAQMD HRA guidance, residential receptors are assumed to be at their home 24 hours a day, or 100 percent of the time. In the 2015 Risk Assessment Guidance, OEHHA includes adjustments to exposure duration to account for the fraction of time at home (FAH), which can be less than 100 percent of the time, based on updated population and activity statistics. The FAH factors are age-specific and are: 0.85 for third trimester of pregnancy to less than 2 years old, 0.72 for ages 2 to less than 16 years, and 0.73 for ages 16 to 70 years. Use of the FAH factors is allowed by the BAAQMD if there are no schools in the project vicinity have a cancer risk of one in a million or greater assuming 100 percent exposure (FAH = 1.0).

Functionally, cancer risk is calculated using the following parameters and formulas:

Cancer Risk (per million) = *CPF x Inhalation Dose x ASF x ED/AT x FAH x 10*⁶ Where: CPF = Cancer potency factor (mg/kg-day)⁻¹ ASF = Age sensitivity factor for specified age group ED = Exposure duration (years) AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless) Inhalation Dose = $C_{air} x DBR^* x A x (EF/365) x 10^{-6}$ Where: Cair = concentration in air (µg/m³) DBR = daily breathing rate (L/kg body weight-day) 8HrBR = 8-hour breathing rate (L/kg body weight-8 hours) A = Inhalation absorption factor EF = Exposure frequency (days/year) 10⁻⁶ = Conversion factor

The health risk parameters used in this evaluation are summarized as follows:

	Exposure Type ᢣ	Infant		Child	Adult
Parameter	Age Range →	3 rd	0<2	2 < 16	16 - 30
		Trimester			
DPM Cancer Potency Factor (1	1.10E+00	1.10E+00	1.10E+00	1.10E+00	
Daily Breathing Rate (L/kg-day	y) 80 th Percentile Rate	273	758	572	261
Daily Breathing Rate (L/kg-day	y) 95 th Percentile Rate	361	1,090	745	335
8-hour Breathing Rate (L/kg-8	hours) 95 th Percentile Rate	-	1,200	520	240
Inhalation Absorption Factor		1	1	1	1
Averaging Time (years)		70	70	70	70
Exposure Duration (years)		0.25	2	14	14*
Exposure Frequency (days/yea	r)	350	350	350	350*
Age Sensitivity Factor	10	10	3	1	
Fraction of Time at Home (FA	0.85-1.0	0.85-1.0	0.72-1.0	0.73*	
* An 8-hour breathing rate (8H	rBR) is used for worker and	school child ex	posures.		

Non-Cancer Hazards

Non-cancer health risk is usually determined by comparing the predicted level of exposure to a chemical to the level of exposure that is not expected to cause any adverse effects (reference exposure level), even to the most susceptible people. Potential non-cancer health hazards from TAC exposure are expressed in terms of a hazard index (HI), which is the ratio of the TAC concentration to a reference exposure level (REL). OEHHA has defined acceptable concentration levels for contaminants that pose non-cancer health hazards. TAC concentrations below the REL are not expected to cause adverse health impacts, even for sensitive individuals. The total HI is calculated as the sum of the HIs for each TAC evaluated and the total HI is compared to the BAAQMD significance thresholds to determine whether a significant non-cancer health impact from a project would occur.

Typically, for residential projects located near roadways with substantial TAC emissions, the primary TAC of concern with non-cancer health effects is diesel particulate matter (DPM). For DPM, the chronic inhalation REL is 5 micrograms per cubic meter ($\mu g/m^3$).

Annual PM2.5 Concentrations

While not a TAC, fine particulate matter (PM_{2.5}) has been identified by the BAAQMD as a pollutant with potential non-cancer health effects that should be included when evaluating potential community health impacts under the California Environmental Quality Act (CEQA). The thresholds of significance for PM_{2.5} (project level and cumulative) are in terms of an increase in the annual average concentration. When considering PM_{2.5} impacts, the contribution from all sources of PM_{2.5} emissions should be included. For projects with potential impacts from nearby local roadways, the PM_{2.5} impacts should include those from vehicle exhaust emissions, PM_{2.5} generated from vehicle tire and brake wear, and fugitive emissions from re-suspended dust on the roads.

Attachment 2: CalEEMod Modeling Inputs and Outputs

		А	ir Quality/	Noise Co	nstruc	tion Ir	form	ation Data Request
Drainat	~~~	Bortoluco	: Dorool					Complete ALL Bertiens in Vellow
Project N	ame: See Equipment Type TAB for type	e, horsepower ar	I Parcel nd load factor					Complete ALL Portions in fellow
	Project Size	99	Dwelling Units	0.58	4 total project	acres distur	bed	
	Based on 2021_08_06_Formal							
	Submittal #3	119,257	s.f. residential					Pile Driving? Y/N?
		1,500	s.f. Quality Restaurant					
								Project include on-site GENERATOR OR FIRE PUMP during project OPERATION?
			_s.f. office/commercial					Y/N? YES for fire pump
			_acres - Outdoor use (c	ommon and patios)				IF YES (if BOTH separate values)>
		22,995	s.f. parking garage	9	0_spaces			Kilowatts/Horsepower: _?? kw
			s.f. parking lot		9 spaces			Fuel Type:??
								Location in project (Plans Desired if Available):
	Construction Hours	8	am to	1	5 pm			
					Total	Δνα	шв	DO NOT MULTIPLY EQUIPMENT HOURS/DAY BY THE QUANTITY OF EQUIPMENT
					Work	Hours per	Annual	
Quantity	Description	HP	Load Factor	Hours/day	Days	day	Hours	Comments
	Demolition	Start Date:	1/3/2023	Total phase:	20			Overall Import/Export Volumes
	Operate the description of the	End Date:	1/30/2023					Demality M.
0	Excavators	81 158	0.73		8	0	0	Uemolition Volume Square footage of buildings to be demolished
1	Rubber-Tired Dozers	247	0.4		8	0	0	(or total tons to be hauled)
<u> </u>	Other Equipment?	51	0.57		0	0	0	
	Site Preparation	Start Date:	1/31/2023	Total phase:	3			Any pavement demolished and hauled? 365 tons (parking pavement) 6 100 sf building
		End Date:	2/2/2023					6,800 sf building
1	Graders Rubber Tired Dozers	187	0.41		8	0	0	
1	Tractors/Loaders/Backhoes	97	0.37		8	0	0	
	Other Equipment?							
	Grading / Excavation	Start Date:	2/3/2023	Total phase:	6			
	Excavators	End Date: 158	2/10/2023 0.38			0	0	Soil Hauling Volume Export volume = 9400 cubic vards?
1	Graders	187	0.41		8	0	0	Import volume = 2000 cubic yards?
1	Concrete/Industrial Saws	81	0.4		8	0	0	a a
2	Tractors/Loaders/Backhoes	97	0.37		8	0	0	
	Trenching/Foundation	Start Date:	2/11/2023	Total phase:	30			
1	Tractor/Loader/Backhoe	97	0.37		6	0	0	
1	Excavators Other Equipment?	158	0.38		6	0	0	
	Building Fotosian	Otort Datas	0/44/0000	Tatalahasa				Camort Trucks? 2. Tatel Dound Tring
	Building - Exterior	End Date:	12/15/2023	Total phase:	220			
1	Cranes	231	0.29		8	0	0	Electric? (Y/N) Otherwise assumed diesel
1	Generator Sets	84	0.74		8	0	0	Or temporary line power? (Y/N)
1	Tractors/Loaders/Backhoes Welders	97 46	0.37 0.45		6 8	0	0	
	Other Equipment?							
Building - Int	erior/Architectural Coating	Start Date:	12/9/2023	Total phase:	10			
1	Air Compressors	End Date: 78	12/22/2023 0.48		6	0	0	
1	Aerial Lift	62	0.31		6	0	0	
	Other Equipment?							
	Paving	Start Date:	12/16/2023	Total phase:	10		-	
1	Coment and Mortar Mixers	Start Date:	12/29/2023		8	0	0	
1	Pavers	130	0.42		8	0	0	Asphalt? 130 cubic yards or round trips?
1	Paving Equipment Rollers	132	0.36		8	0	0	
1	Tractors/Loaders/Backhoes	97	0.37		8	0	0	
	солог сушрлюни:							
	Additional Phases	Start Date:		Total phase:				
		Start Date.				#DIV/0!	0	
						#DIV/0! #DIV/0!	0	
						#DIV/0!	0	
						#DIV/U!	0	/
Equipment ty	pes listed in "Equipment Types" w	vorksheet tab.						
Equipment lis	ed in this sheet is to provide an exan	nple of inputs		Complet	e one	sneet	TOP e	ach project component
It is assumed Add or subtr	that water trucks would be used durin act phases and equipment. as app	ng grading ropriate	-					
Modify horse	power or load factor, as appropria	te						

	Construction Criteria Air Pollutants							
Unmitigated	ROG	NOX	PM10 Exhaust	PM2.5 Exhaust	CO2e			
Year			Tons		MT			
		Construc	tion Equipment					
2023	1.07	1.79	0.08	0.08	276.78			
			EMFAC					
2023	0.03	0.21	0.01	0.01	171.64			
	Ī	Total Construct	tion Emissions by	Year				
2023	1.10	2.00	0.09	0.08	448.42			
		Total Const	ruction Emissions					
Tons	1.10	2.00	0.09	0.08	448.42			
Pounds/Workdays	Average Daily Emissions			Worl	kdays			
2023	8.49	15.47	0.73	0.64		259		
Threshold - lbs/day	54.0	54.0	82.0	54.0				
	Total Construction Emissions							
Pounds	8.49	15.47	0.73	0.64	0.00			
Average	8.49	15.47	0.73	0.64	0.00	259.00		
Threshold - lbs/day	Threshold - Ibs/day 54.0 54.0 54.0 54.0 54.0							

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Bertolucci Parcel, SSF San Mateo County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
Enclosed Parking with Elevator	90.00	Space	0.00	22,995.00	0
Parking Lot	9.00	Space	0.00	3,600.00	0
Quality Restaurant	1.50	1000sqft	0.00	1,500.00	0
Apartments Mid Rise	99.00	Dwelling Unit	0.58	119,257.00	283

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	70
Climate Zone	5			Operational Year	2024
Utility Company	Peninsula Clean Energy				
CO2 Intensity (Ib/MWhr)	0	CH4 Intensity (Ib/MWhr)	0	N2O Intensity (Ib/MWhr)	0

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Applicant provided unit amounts, lot acreage, and square footage

Construction Phase - Applicant provided phase lengths.

Off-road Equipment - add aerial lift

Off-road Equipment - Applicant provided construction equipment info

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Off-road Equipment - Applicant provided construction equipment info

Off-road Equipment - add trenching equipment

Trips and VMT - All trips added to EMFAC2021

Demolition - 13,000 sf and 365 tons

Grading -

Construction Off-road Equipment Mitigation - All equipment t4i, BMP

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblConstEquipMitigation	FuelType	Diesel	Electrical
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	1.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	2.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	3.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	9.00
tblConstEquipMitigation	NumberOfEquipmentMitigated	0.00	3.00
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstEquipMitigation	Tier	No Change	Tier 4 Interim
tblConstructionPhase	NumDays	5.00	10.00
tblConstructionPhase	NumDays	100.00	220.00
tblConstructionPhase	NumDays	10.00	20.00
tblConstructionPhase	NumDays	2.00	6.00
tblConstructionPhase	NumDays	5.00	10.00
tblConstructionPhase	NumDays	1.00	3.00
tblGrading	MaterialExported	0.00	9,400.00
tblGrading	MaterialImported	0.00	2,000.00
tblLandUse	LandUseSquareFeet	36,000.00	22,995.00
tblLandUse	LandUseSquareFeet	99,000.00	119,257.00
tblLandUse	LotAcreage	0.81	0.00
tblLandUse	LotAcreage	0.08	0.00
tblLandUse	LotAcreage	0.03	0.00
tblLandUse	LotAcreage	2.61	0.58
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	4.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	1.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	2.00	3.00
tblOffRoadEquipment	OffRoadEquipmentUnitAmount	1.00	2.00

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	4.00	8.00
tblOffRoadEquipment	UsageHours	6.00	7.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	1.00	8.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	8.00	6.00
tblOffRoadEquipment	UsageHours	6.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblOffRoadEquipment	UsageHours	7.00	8.00
tblTripsAndVMT	HaulingTripNumber	59.00	0.00
tblTripsAndVMT	HaulingTripNumber	1,425.00	0.00
tblTripsAndVMT	VendorTripNumber	15.00	0.00
tblTripsAndVMT	WorkerTripNumber	13.00	0.00
tblTripsAndVMT	WorkerTripNumber	8.00	0.00
tblTripsAndVMT	WorkerTripNumber	10.00	0.00
tblTripsAndVMT	WorkerTripNumber	5.00	0.00
tblTripsAndVMT	WorkerTripNumber	83.00	0.00
tblTripsAndVMT	WorkerTripNumber	17.00	0.00
tblTripsAndVMT	WorkerTripNumber	15.00	0.00

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

Page 1 of 1

Bertolucci Parcel, SSF - San Mateo County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					tor	s/yr							MT	/yr		
2023	1.0714	1.7926	1.8698	3.2900e-003	0.0389	0.0812	0.1201	0.0165	0.0774	0.0939	0.0000	275.3711	275.3711	0.0565	0.0000	276.7839
Maximum	1.0714	1.7926	1.8698	3.2900e-003	0.0389	0.0812	0.1201	0.0165	0.0774	0.0939	0.0000	275.3711	275.3711	0.0565	0.0000	276.7839

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Year	tons/yr										MT/yr						
2023	0.8986	0.8677	1.5581	2.4500e-003	0.0175	3.8900e- 003	0.0214	7.4100e- 003	3.8900e- 003	0.0113	0.0000	213.2580	213.2580	0.0497	0.0000	214.5015	
Maximum	0.8986	0.8677	1.5581	2.4500e-003	0.0175	3.8900e- 003	0.0214	7.4100e- 003	3.8900e- 003	0.0113	0.0000	213.2580	213.2580	0.0497	0.0000	214.5015	

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e			
Percent Reduction	16.13	51.60	16.67	25.53	55.00	95.21	82.19	55.04	94.98	87.97	0.00	22.56	22.56	11.98	0.00	22.50			
Quarter	Sta	art Date	End	Date	Maxim	Maximum Unmitigated ROG + NOX (tons/quarter) Maximum Mitigat								ted ROG + NOX (tons/quarter)					
1	1-	-3-2023	4-2-	2023			0.5377												
2	4-	-3-2023	7-2-	2023			0.4985												
3	7-	-3-2023	9-30	-2023			0.4930					0.2054							
			Hig	hest	0.5377 0.2751														

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	MT/yr										
Area	0.8092	0.0137	1.0502	6.6000e-004		0.0491	0.0491		0.0491	0.0491	4.5134	3.0564	7.5698	8.4100e- 003	3.0000e-004	7.8683
Energy	5.8600e- 003	0.0508	0.0267	3.2000e-004		4.0500e- 003	4.0500e-003		4.0500e- 003	4.0500e-003	0.0000	58.0138	58.0138	1.1100e- 003	1.0600e-003	58.3586
Mobile	0.2325	0.2119	2.1794	4.4100e-003	0.4877	2.9400e- 003	0.4907	0.1303	2.7300e- 003	0.1330	0.0000	406.7895	406.7895	0.0288	0.0185	413.0316
Waste						0.0000	0.0000		0.0000	0.0000	9.5223	0.0000	9.5223	0.5628	0.0000	23.5911
Water						0.0000	0.0000		0.0000	0.0000	2.1908	0.0000	2.1908	0.2250	5.3100e-003	9.3996
Total	1.0476	0.2765	3.2564	5.3900e-003	0.4877	0.0560	0.5438	0.1303	0.0558	0.1861	16.2265	467.8597	484.0862	0.8261	0.0252	512.2491

Mitigated Operational

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	is/yr							МТ	/yr		
Area	0.8092	0.0137	1.0502	6.6000e-004		0.0491	0.0491		0.0491	0.0491	4.5134	3.0564	7.5698	8.4100e- 003	3.0000e-004	7.8683
Energy	5.8600e- 003	0.0508	0.0267	3.2000e-004		4.0500e- 003	4.0500e-003		4.0500e- 003	4.0500e-003	0.0000	58.0138	58.0138	1.1100e- 003	1.0600e-003	58.3586
Mobile	0.2325	0.2119	2.1794	4.4100e-003	0.4877	2.9400e- 003	0.4907	0.1303	2.7300e- 003	0.1330	0.0000	406.7895	406.7895	0.0288	0.0185	413.0316
EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Waste						0.0000	0.0000		0.0000	0.0000	9.5223	0.0000	9.5223	0.5628	0.0000	23.5911
Water						0.0000	0.0000		0.0000	0.0000	2.1908	0.0000	2.1908	0.2250	5.3100e-003	9.3996
Total	1.0476	0.2765	3.2564	5.3900e-003	0.4877	0.0560	0.5438	0.1303	0.0558	0.1861	16.2265	467.8597	484.0862	0.8261	0.0252	512.2491

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	1/3/2023	1/30/2023	5	20	
2	Site Preparation	Site Preparation	1/31/2023	2/2/2023	5	3	
3	Grading	Grading	2/3/2023	2/10/2023	5	6	
4	Trenching	Trenching	2/11/2023	3/24/2023	5	30	
5	Building Construction	Building Construction	2/11/2023	12/15/2023	5	220	
6	Architectural Coating	Architectural Coating	12/9/2023	12/22/2023	5	10	
7	Paving	Paving	12/16/2023	12/29/2023	5	10	

Acres of Grading (Site Preparation Phase): 3

Acres of Grading (Grading Phase): 6

Acres of Paving: 0

Residential Indoor: 241,495; Residential Outdoor: 80,498; Non-Residential Indoor: 2,250; Non-Residential Outdoor: 750; Striped Parking Area: 1,596

OffRoad Equipment

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Rubber Tired Dozers	1	8.00	247	0.40
Demolition	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Site Preparation	Graders	1	8.00	187	0.41
Site Preparation	Rubber Tired Dozers	1	8.00	247	0.40
Site Preparation	Tractors/Loaders/Backhoes	1	8.00	97	0.37
Grading	Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Tractors/Loaders/Backhoes	2	8.00	97	0.37
Trenching	Excavators	1	6.00	158	0.38
Trenching	Tractors/Loaders/Backhoes	1	6.00	97	0.37
Building Construction	Cranes	1	8.00	231	0.29
Building Construction	Forklifts	2	7.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	1	6.00	97	0.37
Building Construction	Welders	3	8.00	46	0.45
Architectural Coating	Aerial Lifts	1	6.00	63	0.31
Architectural Coating	Air Compressors	1	6.00	78	0.48
Paving	Cement and Mortar Mixers	1	8.00	9	0.56
Paving	Pavers	1	8.00	130	0.42
Paving	Paving Equipment	1	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Paving	Tractors/Loaders/Backhoes	1	8.00	97	0.37

Trips and VMT

Phase NameOffroad Equipment CountWorker TripVendor TripHauling TripWorker TripHauling TripWorker VehicleVendor VehicleNumberNumberNumberNumberLengthLengthLengthClassClass	Hauling Vehicle Class
---	--------------------------

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Demolition	5	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Site Preparation	3	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	4	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Trenching	2	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	8	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	2	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	0.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Use Alternative Fuel for Construction Equipment

Use Cleaner Engines for Construction Equipment

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

3.2 Demolition - 2023

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	s/yr							MT	/yr		
Fugitive Dust					6.4000e- 003	0.0000	6.4000e-003	9.7000e- 004	0.0000	9.7000e-004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0147	0.1432	0.1346	2.4000e-004		6.7700e- 003	6.7700e-003		6.3300e- 003	6.3300e-003	0.0000	21.0866	21.0866	5.3500e- 003	0.0000	21.2202
Total	0.0147	0.1432	0.1346	2.4000e-004	6.4000e- 003	6.7700e- 003	0.0132	9.7000e- 004	6.3300e- 003	7.3000e-003	0.0000	21.0866	21.0866	5.3500e- 003	0.0000	21.2202

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					2.8800e- 003	0.0000	2.8800e-003	4.4000e- 004	0.0000	4.4000e-004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	4.6300e- 003	0.0854	0.1542	2.4000e-004		3.7000e- 004	3.7000e-004		3.7000e- 004	3.7000e-004	0.0000	21.0865	21.0865	5.3500e- 003	0.0000	21.2202
Total	4.6300e- 003	0.0854	0.1542	2.4000e-004	2.8800e- 003	3.7000e- 004	3.2500e-003	4.4000e- 004	3.7000e- 004	8.1000e-004	0.0000	21.0865	21.0865	5.3500e- 003	0.0000	21.2202

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.3 Site Preparation - 2023

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Fugitive Dust					0.0106	0.0000	0.0106	5.1400e- 003	0.0000	5.1400e-003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.8300e- 003	0.0200	0.0106	3.0000e-005		8.2000e- 004	8.2000e-004		7.6000e- 004	7.6000e-004	0.0000	2.4078	2.4078	7.8000e- 004	0.0000	2.4273
Total	1.8300e- 003	0.0200	0.0106	3.0000e-005	0.0106	8.2000e- 004	0.0114	5.1400e- 003	7.6000e- 004	5.9000e-003	0.0000	2.4078	2.4078	7.8000e- 004	0.0000	2.4273

Unmitigated Construction Off-Site

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					4.7800e- 003	0.0000	4.7800e-003	2.3100e- 003	0.0000	2.3100e-003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	4.8000e- 004	8.0200e- 003	0.0156	3.0000e-005		4.0000e- 005	4.0000e-005		4.0000e- 005	4.0000e-005	0.0000	2.4078	2.4078	7.8000e- 004	0.0000	2.4273
Total	4.8000e- 004	8.0200e- 003	0.0156	3.0000e-005	4.7800e- 003	4.0000e- 005	4.8200e-003	2.3100e- 003	4.0000e- 005	2.3500e-003	0.0000	2.4078	2.4078	7.8000e- 004	0.0000	2.4273

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.4 Grading - 2023 Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	s/yr							MT	/yr		
Fugitive Dust					0.0219	0.0000	0.0219	0.0104	0.0000	0.0104	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	4.1100e- 003	0.0446	0.0278	6.0000e-005		1.8700e- 003	1.8700e-003		1.7200e- 003	1.7200e-003	0.0000	5.6364	5.6364	1.8200e- 003	0.0000	5.6819
Total	4.1100e- 003	0.0446	0.0278	6.0000e-005	0.0219	1.8700e- 003	0.0238	0.0104	1.7200e- 003	0.0121	0.0000	5.6364	5.6364	1.8200e- 003	0.0000	5.6819

Unmitigated Construction Off-Site

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					9.8500e- 003	0.0000	9.8500e-003	4.6700e- 003	0.0000	4.6700e-003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.1600e- 003	0.0201	0.0382	6.0000e-005		1.0000e- 004	1.0000e-004		1.0000e- 004	1.0000e-004	0.0000	5.6364	5.6364	1.8200e- 003	0.0000	5.6819
Total	1.1600e- 003	0.0201	0.0382	6.0000e-005	9.8500e- 003	1.0000e- 004	9.9500e-003	4.6700e- 003	1.0000e- 004	4.7700e-003	0.0000	5.6364	5.6364	1.8200e- 003	0.0000	5.6819

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.5 Trenching - 2023 Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Off-Road	3.8300e- 003	0.0347	0.0618	9.0000e-005		1.7100e- 003	1.7100e-003		1.5700e- 003	1.5700e-003	0.0000	8.1818	8.1818	2.6500e- 003	0.0000	8.2480
Total	3.8300e- 003	0.0347	0.0618	9.0000e-005		1.7100e- 003	1.7100e-003		1.5700e- 003	1.5700e-003	0.0000	8.1818	8.1818	2.6500e- 003	0.0000	8.2480

Unmitigated Construction Off-Site

Page 1 of 1

Bertolucci Parcel, SSF - San Mateo County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive Ext PM10 P	xhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tons/yr								MT	/yr		
Off-Road	1.5000e- 003	0.0409	0.0704	9.0000e-005	1.5 0	5000e- 004	1.5000e-004		1.5000e- 004	1.5000e-004	0.0000	8.1818	8.1818	2.6500e- 003	0.0000	8.2480
Total	1.5000e- 003	0.0409	0.0704	9.0000e-005	1.5	5000 <mark>e-</mark> 004	1.5000e-004		1.5000e- 004	1.5000e-004	0.0000	8.1818	8.1818	2.6500e- 003	0.0000	8.2480

Mitigated Construction Off-Site

ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e

Page 1 of 1

Bertolucci Parcel, SSF - San Mateo County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Category					tor	ns/yr				MT	/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.6 Building Construction - 2023

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr							MT	/yr		
Off-Road	0.1885	1.4986	1.5636	2.7500e-003		0.0675	0.0675		0.0647	0.0647	0.0000	228.4723	228.4723	0.0432	0.0000	229.5525
Total	0.1885	1.4986	1.5636	2.7500e-003		0.0675	0.0675		0.0647	0.0647	0.0000	228.4723	228.4723	0.0432	0.0000	229.5525

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	ns/yr							MT	/yr		

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.0361	0.6668	1.2009	1.9100e-003		2.9100e- 003	2.9100e-003		2.9100e- 003	2.9100e-003	0.0000	166.3593	166.3593	0.0364	0.0000	167.2700
Total	0.0361	0.6668	1.2009	1.9100e-003		2.9100e- 003	2.9100e-003		2.9100e- 003	2.9100e-003	0.0000	166.3593	166.3593	0.0364	0.0000	167.2700

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		tons/yr											MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.7 Architectural Coating - 2023

Unmitigated Construction On-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.8529					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	1.0900e- 003	8.5100e- 003	0.0132	2.0000e-005		3.9000e- 004	3.9000e-004		3.9000e- 004	3.9000e-004	0.0000	1.8299	1.8299	2.6000e- 004	0.0000	1.8362
Total	0.8540	8.5100e- 003	0.0132	2.0000e-005		3.9000e- 004	3.9000e-004		3.9000e- 004	3.9000e-004	0.0000	1.8299	1.8299	2.6000e- 004	0.0000	1.8362

Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr				MT	/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Archit. Coating	0.8529					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	4.3000e- 004	8.8400e- 003	0.0139	2.0000e-005		1.6000e- 004	1.6000e-004		1.6000e- 004	1.6000e-004	0.0000	1.8299	1.8299	2.6000e- 004	0.0000	1.8362
Total	0.8533	8.8400e- 003	0.0139	2.0000e-005		1.6000e- 004	1.6000e-004		1.6000e- 004	1.6000e-004	0.0000	1.8299	1.8299	2.6000e- 004	0.0000	1.8362

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					tor	is/yr				MT	/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

3.8 Paving - 2023

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT.	/yr		
Off-Road	4.4000e- 003	0.0431	0.0584	9.0000e-005		2.1700e- 003	2.1700e-003		2.0000e- 003	2.0000e-003	0.0000	7.7564	7.7564	2.4600e- 003	0.0000	7.8179
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	4.4000e- 003	0.0431	0.0584	9.0000e-005		2.1700e- 003	2.1700e-003		2.0000e- 003	2.0000e-003	0.0000	7.7564	7.7564	2.4600e- 003	0.0000	7.8179

Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		tons/yr											MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	'yr		
Off-Road	1.4800e- 003	0.0376	0.0649	9.0000e-005		1.4000e- 004	1.4000e-004		1.4000e- 004	1.4000e-004	0.0000	7.7564	7.7564	2.4600e- 003	0.0000	7.8178
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	1.4800e- 003	0.0376	0.0649	9.0000e-005		1.4000e- 004	1.4000e-004		1.4000e- 004	1.4000e-004	0.0000	7.7564	7.7564	2.4600e- 003	0.0000	7.8178

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		tons/yr											MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					to	ns/yr							МТ	/yr		
Mitigated	0.2325	0.2119	2.1794	4.4100e-003	0.4877	2.9400e- 003	0.4907	0.1303	2.7300e- 003	0.1330	0.0000	406.7895	406.7895	0.0288	0.0185	413.0316
Unmitigated	0.2325	0.2119	2.1794	4.4100e-003	0.4877	2.9400e- 003	0.4907	0.1303	2.7300e- 003	0.1330	0.0000	406.7895	406.7895	0.0288	0.0185	413.0316

4.2 Trip Summary Information

	Av	erage Daily Trip Rat	e	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
Apartments Mid Rise	538.56	486.09	404.91	1,182,453	1,182,453
Enclosed Parking with Elevator	0.00	0.00	0.00		
Parking Lot	0.00	0.00	0.00		
Quality Restaurant	125.76	135.06	107.96	147,731	147,731
Total	664.32	621.15	512.87	1,330,184	1,330,184

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
Apartments Mid Rise	10.80	4.80	5.70	31.00	15.00	54.00	86	11	3
Enclosed Parking with Elevator	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Parking Lot	9.50	7.30	7.30	0.00	0.00	0.00	0	0	0
Quality Restaurant	9.50	7.30	7.30	12.00	69.00	19.00	38	18	44

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
Apartments Mid Rise	0.473689	0.072335	0.232457	0.144246	0.025248	0.006233	0.010124	0.002125	0.001469	0.000591	0.028445	0.000434	0.002601
Enclosed Parking with Elevator	0.473689	0.072335	0.232457	0.144246	0.025248	0.006233	0.010124	0.002125	0.001469	0.000591	0.028445	0.000434	0.002601
Parking Lot	0.473689	0.072335	0.232457	0.144246	0.025248	0.006233	0.010124	0.002125	0.001469	0.000591	0.028445	0.000434	0.002601
Quality Restaurant	0.473689	0.072335	0.232457	0.144246	0.025248	0.006233	0.010124	0.002125	0.001469	0.000591	0.028445	0.000434	0.002601

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT.	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Electricity Unmitigated					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Mitigated	5.8600e- 003	0.0508	0.0267	3.2000e-004	4.0500e- 003	4.0500e-003	4.0500e- 003	4.0500e-003	0.0000	58.0138	58.0138	1.1100e- 003	1.0600e-003	58.3586
NaturalGas Unmitigated	5.8600e- 003	0.0508	0.0267	3.2000e-004	4.0500e- 003	4.0500e-003	4.0500e- 003	4.0500e-003	0.0000	58.0138	58.0138	1.1100e- 003	1.0600e-003	58.3586

5.2 Energy by Land Use - NaturalGas

Unmitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					tor	ns/yr							МТ	/yr		
Apartments Mid Rise	835858	4.5100e- 003	0.0385	0.0164	2.5000e- 004		3.1100e-003	3.1100e- 003		3.1100e- 003	3.1100e-003	0.0000	44.6046	44.6046	8.5000e-004	8.2000e- 004	44.8696
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Quality Restaurant	251280	1.3500e- 003	0.0123	0.0104	7.0000e- 005		9.4000e-004	9.4000e- 004		9.4000e- 004	9.4000e-004	0.0000	13.4093	13.4093	2.6000e-004	2.5000e- 004	13.4889
Total		5.8600e- 003	0.0508	0.0267	3.2000e- 004		4.0500e-003	4.0500e- 003		4.0500e- 003	4.0500e-003	0.0000	58.0138	58.0138	1.1100e-003	1.0700e- 003	58.3586

Mitigated

NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
--------------------	-----	-----	----	-----	------------------	-----------------	------------	-------------------	------------------	-------------	----------	-----------	-----------	-----	-----	------

Page 1 of 1

Bertolucci Parcel, SSF - San Mateo County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Land Use	kBTU/yr					ton	ns/yr						МТ	ī/yr		
Apartments Mid Rise	835858	4.5100e- 003	0.0385	0.0164	2.5000e- 004		3.1100e-003	3.1100e- 003	3.1100e- 003	3.1100e-003	0.0000	44.6046	44.6046	8.5000e-004	8.2000e- 004	44.8696
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Quality Restaurant	251280	1.3500e- 003	0.0123	0.0104	7.0000e- 005		9.4000e-004	9.4000e- 004	9.4000e- 004	9.4000e-004	0.0000	13.4093	13.4093	2.6000e-004	2.5000e- 004	13.4889
Total		5.8600e- 003	0.0508	0.0267	3.2000e- 004		4.0500e-003	4.0500e- 003	4.0500e- 003	4.0500e-003	0.0000	58.0138	58.0138	1.1100e-003	1.0700e- 003	58.3586

5.3 Energy by Land Use - Electricity

Unmitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	/yr	
Apartments Mid Rise	384751	0.0000	0.0000	0.0000	0.0000
Enclosed Parking with Elevator	125093	0.0000	0.0000	0.0000	0.0000
Parking Lot	1260	0.0000	0.0000	0.0000	0.0000
Quality Restaurant	43035	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	/yr	
Apartments Mid Rise	384751	0.0000	0.0000	0.0000	0.0000
Enclosed Parking with Elevator	125093	0.0000	0.0000	0.0000	0.0000
Parking Lot	1260	0.0000	0.0000	0.0000	0.0000
Quality Restaurant	43035	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.8092	0.0137	1.0502	6.6000e-004		0.0491	0.0491		0.0491	0.0491	4.5134	3.0564	7.5698	8.4100e- 003	3.0000e-004	7.8683
Unmitigated	0.8092	0.0137	1.0502	6.6000e-004		0.0491	0.0491		0.0491	0.0491	4.5134	3.0564	7.5698	8.4100e- 003	3.0000e-004	7.8683

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					tor	ns/yr							МТ	/yr		
Architectural Coating	0.0853					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.4733					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	0.2284	5.2600e-003	0.3145	6.3000e-004		0.0450	0.0450		0.0450	0.0450	4.5134	1.8539	6.3672	7.2500e- 003	3.0000e-004	6.6368
Landscaping	0.0222	8.4700e-003	0.7357	4.0000e-005		4.0800e- 003	4.0800e-003		4.0800e- 003	4.0800e-003	0.0000	1.2026	1.2026	1.1600e- 003	0.0000	1.2315
Total	0.8092	0.0137	1.0502	6.7000e-004		0.0491	0.0491		0.0491	0.0491	4.5134	3.0564	7.5698	8.4100e- 003	3.0000e-004	7.8683

Mitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	is/yr							MT	/yr		
Architectural Coating	0.0853					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.4733					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Hearth	0.2284	5.2600e-003	0.3145	6.3000e-004		0.0450	0.0450		0.0450	0.0450	4.5134	1.8539	6.3672	7.2500e- 003	3.0000e-004	6.6368
Landscaping	0.0222	8.4700e-003	0.7357	4.0000e-005		4.0800e- 003	4.0800e-003		4.0800e- 003	4.0800e-003	0.0000	1.2026	1.2026	1.1600e- 003	0.0000	1.2315

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Total	0.8092	0.0137	1.0502	6.7000e-004	0.0491	0.0491	0.0491	0.0491	4.5134	3.0564	7.5698	8.4100e-	3.0000e-004	7.8683
												003		

7.0 Water Detail

7.1 Mitigation Measures Water

	Total CO2	CH4	N2O	CO2e
Category		M	Г/yr	
Mitigated	2.1908	0.2250	5.3100e- 003	9.3996
Unmitigated	2.1908	0.2250	5.3100e- 003	9.3996

7.2 Water by Land Use

<u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		МТ	/yr	
Apartments Mid Rise	6.45025 / 4.06646	2.0464	0.2102	4.9600e-003	8.7798
Enclosed Parking with Elevator	0/0	0.0000	0.0000	0.0000	0.0000

Page 1 of 1

Bertolucci Parcel, SSF - San Mateo County, Annual

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

Total		2.1908	0.2250	5.3100e-003	9.3996
Quality Restaurant	0.455301 / 0.0290617	0.1445	0.0148	3.5000e-004	0.6197
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	/yr	
Apartments Mid Rise	6.45025 / 4.06646	2.0464	0.2102	4.9600e-003	8.7798
Enclosed Parking with Elevator	0/0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0/0	0.0000	0.0000	0.0000	0.0000
Quality Restaurant	0.455301 / 0.0290617	0.1445	0.0148	3.5000e-004	0.6197
Total		2.1908	0.2250	5.3100e-003	9.3996

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	Total CO2	CH4	N2O	CO2e						
	MT/yr									
Mitigated	9.5223	0.5628	0.0000	23.5911						
Unmitigated	9.5223	0.5628	0.0000	23.5911						

8.2 Waste by Land Use

Unmitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	/yr	
Apartments Mid Rise	45.54	9.2442	0.5463	0.0000	22.9021
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Quality Restaurant	1.37	0.2781	0.0164	0.0000	0.6890
Total		9.5223	0.5628	0.0000	23.5911

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	/yr	
Apartments Mid Rise	45.54	9.2442	0.5463	0.0000	22.9021
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0.0000
Parking Lot	0	0.0000	0.0000	0.0000	0.0000
Quality Restaurant	1.37	0.2781	0.0164	0.0000	0.6890
Total		9.5223	0.5628	0.0000	23.5911

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
Boilers						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						

Equipment Type	Number

EMFAC Off-Model Adjustment Factors for Gasoline Light Duty Vehicle to Account for the SAFE Vehicle Rule Not Applied

11.0 Vegetation

Attachment 3: EMFAC2021 Calculations

	Summary of Construction Traffic Emissions (EMFAC2021)													
					Fugitive	Exhaust	PM10	Fugitive	Exhaust	PM2.5				
VEAR	ROG	NOx	0	502	PIM10	PM10	lotal	PIM2.5	PIM2.5	lotal	NBIO- CO2	CH4 Metric	N2O Tons	CO2e
Criteria Pollutants														
2023	0.0281	0.2112	0.3699	0.0017	0.0875	0.0128	0.1003	0.0132	0.0052	0.0184	165.9230	0.0161	0.0178	171.6371
	Toxic Air Contaminants (1.0 Mile Trip Length)													
2023	0.0233	0.0495	0.1225	0.0002	0.0080	0.0011	0.0091	0.0012	0.0005	0.0017	18.3056	0.0035	0.0025	19.1261

CalEEMod Construction Inputs

			Total Worker	Total Vendor	CalEEMod	Worker Trin	Vendor Trin	Hauling Trin	Worker Vehicle	Vendor Vehicle	Hauling Vehicle	Worker	Vendor	Haulina
Phase	TRIPS	TRIPS	Trips	Trips	TRIPS	Length	Length	Length	Class	Class	Class	VMT	VMT	VMT
Demolition	1	3 () 260) 0	96	10.8	7.3	20	0 LD_Mix	HDT_Mix	HHDT	2808	0	1920
Site Preparation	:	3 () 24	ь о	0	10.8	7.3	20	0 LD_Mix	HDT_Mix	HHDT	259.2	0	0
Grading	1) () 60) 0	1425	10.8	7.3	20	0 LD_Mix	HDT_Mix	HHDT	648	0	28500
Trenching/Foundation		5 () 150) 0	0	10.8	7.3	20	0 LD_Mix	HDT_Mix	HHDT	1620	0	0
Paving	1	5 () 150) 0	31	10.8	7.3	20	0 LD_Mix	HDT_Mix	HHDT	1620	0	620
Building Construction	8	3 15	5 18260	3300	210	10.8	7.3	20	0 LD_Mix	HDT_Mix	HHDT	197208	24090	4200
Architectural Coating	1	7 () 170	0 0	0	10.8	7.3	20	0 LD_Mix	HDT_Mix	HHDT	1836	0	0

Number of Days Per Year				
2023	<mark>1/3/23</mark>	12/29/23	361	259
			361	259 Total Workdays

Phase	Start Date	End Date	Days/Week	Workdays
Demolition	1/3/2023	1/30/2023	5	20
Site Preparation	1/31/2023	2/2/2023	5	3
Grading	2/3/2023	2/10/2023	5	6
Trenching/Foundation	2/11/2023	3/24/2023	5	30
Paving	12/16/2023	12/29/2023	5	10
Building Construction	2/11/2023	12/15/2023	5	220
Architectural Coating	12/9/2023	12/22/2023	5	10

Source: EMFA2X01 (V.0.1) Emission Rates Ragion Type Caminy Ragion: San Mato Calendar Yara 7203 Source: Annual Venice: Caudication: EMFA2X07 Calegoria: Unice: minicipany to CAMIT and EVMIT, Hip/day for Type, g/mile for RUREX, PARW and PMTW, g/rep for STREX, HOTSOAK and RURLOSS, g/vehicle/day for DEX: and DURN. PHEV calculated based on total VMT.

Region C	Calendar Y Vehicle	CatModel Yea Speed Fuel	Population Total VMT_CVMT	EVMT Trips	NOx_RUNENOx_IDL	LEX NOx_STREI PM2.5_RU	PM2.5_IDLPM2.5_STR	PM2.5_PMPM2.5_PMPM10	RUNPM10_IDLEPM10	STR PM10_PM'PM	M10_PMICO2_RUNE	CO2_IDLEXCO2_STREX	CH4_RUNECH4_IDLE	CH4_STRED N2O_RUNEN	20_IDLEXN20_STRE:ROG	RUNEROG_IDLE) ROG	STRE:ROG_HOTSROG	5_RUNLROG_DIUR TOG_R	UNETOG_IDLEXTOG_S	TREITOG_HOTSTOG_R	JNLTOG_DIUR N	13_RUNECO_RUNEX	CO_IDLEX_CO_STREX_SC	<pre>x_RUNE SOX_IDLEX</pre>	SOX_STREX
San Mateo	2023 HHDT	Aggregate Aggregate Gasoline	4.303891 593.3265 593.326	i5 0 86.112	25 4.056089	0 0.0028 0.00142	0 0.000834	0.005 0.031149 0.00	1544 0 0.00	0.02 0	0.088996 2258.184	0 54.48492	0.114491 0	0.000118 0.150249	0 0.000135 0.5	81376 0 0.0	00638 0.041838 0.3	335524 2.939257 0.848	342 0 0.000	699 0.041838 0.335	24 2.939257	0.045 33.28789	0 6.069294 0	.022324 0	J 0.000539
San Mateo	2023 HHDT	Aggregate Aggregate Diesel	1295.72 119079.6 119079	6 0 14027.6	66 2.889862 47.028	09 2.876808 0.025432	0.037858 0	0.008609 0.030943 0.026	5582 0.03957	0 0.034434	0.08841 1843.774	8291.615 0	0.001322 0.156217	0 0.290487	1.305347 0 0.0	28463 3.363316	0 0	0 0.032	403 3.828879	0 0	0 0 0	197741 0.123869	46.58006 0 0	017459 0.078517	/ 0
San Mateo	2023 HHDT	Aggregate Aggregate Electricity	0.738781 40.81187	0 40.81187 9.6365	89 0	0 0 0	0 0	0.008666 0.01378	0 0	0 0.034663 0	0.039372 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	J 0
San Mateo	2023 HHDT	Aggregate Aggregate Natural G	a 157.5655 10602.72 10602.3	2 0 1057.3	68 1.650268 10.12	32 0 0.001897	0.012167 0	0.009 0.058575 0.003	2063 0.013232	0 0.036 0	0.167357 1522.593	8490.533 0	3.343054 25.56751	0 0.310391	1.730851 0 0.0	76973 0.418135	0 0	0 0 3.445	109 26.1537	0 0	0 0	0.73711 17.41229	66.41256 0	0 0	ه ر
San Mateo	2023 LDA	Aggregate Aggregate Gasoline	240378.8 7727537 772753	7 0 11293	155 0.042338	0 0.260506 0.001198	0 0.002031	0.002 0.002348 0.00	1303 0 0.00	2208 0.008 0	0.006708 278.3785	0 70.81713	0.002267 0	0.072534 0.004517	0 0.032351 0.0	08874 0 0.3	41649 0.087062 0.2	222247 1.324707 0.012	348 0 0.374	061 0.087062 0.222	47 1.324707 0	0.035408 0.677749	0 3.395649 0	.002752 0	J 0.0007
San Mateo	2023 LDA	Aggregate Aggregate Diesel	833.7612 19906.52 19906.5	2 0 3528.1	91 0.213764	0 0 0.014362	0 0	0.002 0.002398 0.01	5012 0	0 0.008 0	0.006851 234.8149	0 0	0.001164 0	0 0.036995	0 0 0.	02507 0	0 0	0 0.02	854 0	0 0	0 0	0.0031 0.317118	0 0 0	.002225 0	ه ر
San Mateo	2023 LDA	Aggregate Aggregate Electricity	16299 630419.6	0 630419.6 81240.9	.99 0	0 0 0	0 0	0.002 0.001529	0 0	0 0.008	0.00437 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	ه ر
San Mateo	2023 LDA	Aggregate Aggregate Plug-in Hy	¢ 6930.414 264587.6 131767	9 132819.8 28657.	26 0.003199	0 0.117199 0.000615	0 0.002065	0.002 0.001318 0.00	0 0.00	2246 0.008 0	0.003766 134.3501	0 65.86248	0.000415 0	0.042451 0.000556	0 0.02034 0.0	01345 0 0.1	76635 0.03705 0.0	32896 0.392427 0.001	962 0 0.193	393 0.03705 0.032	96 0.392427 0	0.200492	0 1.37819 0	.001328 0	J 0.000651
San Mateo	2023 LDT1	Aggregate Aggregate Gasoline	24557.61 732297.8 732297	8 0 111855	5.3 0.11638	0 0.364578 0.001649	0 0.002601	0.002 0.002829 0.00	1794 0 0.00	2828 0.008 0	0.008082 326.1114	0 85.73673	0.005448 0	0.099842 0.008499	0 0.037022 0.0	24289 0 0.5	13929 0.14557 0.4	16379 2.294434 0.035	435 0 0.562	687 0.14557 0.416	79 2.294434 0	.037022 1.217988	0 5.093009 0	.003224 0	J 0.000848
San Mateo	2023 LDT1	Aggregate Aggregate Diesel	7.655601 101.9185 101.918	5 0 22.201	73 1.676086	0 0.239368	0 0	0.002 0.003332 0.25	0191 0	0 0.008	0.00952 418.3389	0 0	0.014739 0	0 0.065909	0 0.3	17327 0	0 0	0 0.361	255 0	0 0	0 0	0.0031 1.688168	0 0 0	.003964 0	ه ر
San Mateo	2023 LDT1	Aggregate Aggregate Electricity	74.62311 2574.77	0 2574.77 357.95	26 0	0 0 0	0 0	0.002 0.001535	0 0	0 0.008 0	0.004386 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	J 0
San Mateo	2023 LDT1	Aggregate Aggregate Plug-in Hy	A 34.67073 1451.31 668.30	8 783.0024 143.36	35 0.002958	0 0.117199 0.000383	0 0.001401	0.002 0.001331 0.00	0 0.00	1524 0.008 0	0.003802 124.2265	0 72.42832	0.000385 0	0.042531 0.000515	0 0.020414 0.0	01243 0 0.1	76635 0.024383 0	.02158 0.274849 0.001	814 0 0.193	393 0.024383 0.02	58 0.274849	0.01934 0.185385	0 1.37819 0	.001228 0	J 0.000716
San Mateo	2023 LDT2	Aggregate Aggregate Gasoline	139222.3 4716888 471688	8 0 668266	6.1 0.05408	0 0.29713 0.001207	0 0.001949	0.002 0.002716 0.00	1313 0 0.00	2119 0.008 0	0.007759 339.1094	0 86.14007	0.00237 0	0.075845 0.004959	0 0.034716 0.0	09113 0 0.3	47984 0.063629 0.1	160781 1.007437 0.013	297 0 0.380	999 0.063629 0.160	81 1.007437 0	0.693563	0 3.480515 0	.003352 0	J 0.000852
San Mateo	2023 LDT2	Aggregate Aggregate Diesel	541.6894 18280.98 18280.9	8 0 2609.0	31 0.042759	0 0.004694	0 0	0.002 0.002739 0.00	1906 0	0 0.008 0	0.007825 314.2391	0 0	0.000594 0	0 0.049508	0 0 0.0	12791 0	0 0	0 0.014	562 0	0 0	0 0	0.0031 0.121058	0 0 0	.002978 0	ه ر
San Mateo	2023 LDT2	Aggregate Aggregate Electricity	855.0521 26877.43	0 26877.43 4389.9	134 0	0 0 0	0 0	0.002 0.001524	0 0	0 0.008 0	0.004355 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	ه ر
San Mateo	2023 LDT2	Aggregate Aggregate Plug-in Hy	¢ 1293.229 52235.96 24959	1 27276.86 5347.5	02 0.00307	0 0.117199 0.000478	0 0.001688	0.002 0.001325 0.0	0 0.00	1836 0.008 0	0.003785 128.9014	0 78.74622	0.000399 0	0.042537 0.000535	0 0.02042 0.	00129 0 0.1	76635 0.025663 0	02377 0.299211 0.001	883 0 0.193	393 0.025663 0.02	77 0.299211 0	0.192361	0 1.37819 0	.001274 0	J 0.000778
San Mateo	2023 LHDT1	Aggregate Aggregate Gasoline	10572.08 392533.1 392533	1 0 157508	8.2 0.12528 0.0351	12 0.59784 0.00142	0 0.000253	0.002 0.0273 0.00	1545 0 0.00	0.008	0.078 853.4932	117.883 26.97693	0.006321 0.111177	0.030421 0.00715	0.002997 0.050012 0.	03091 0.4025 0.1	48384 0.036924 0.1	198922 2.014404 0.045	104 0.587327 0.162	462 0.036924 0.198	22 2.014404 0	0.986439	3.761565 3.318076 0	008438 0.001165	s 0.000267
San Mateo	2023 LHDT1	Aggregate Aggregate Diesel	4577.109 179686.5 179686	5 0 57574.3	27 1.224717 1.762	06 0 0.0273	0.026942 0	0.003 0.0273 0.02	8534 0.02816	0 0.012	0.078 630.6192	129.0392 0	0.006697 0.005098	0 0.099354	0.02033 0 0.1	44187 0.10976	0 0	0 0.164	147 0.124954	0 0	0 0 0	.184546 0.371953	0.909745 0 0	005975 0.001223	3 0
San Mateo	2023 LHDT2	Aggregate Aggregate Gasoline	1231.236 43549.94 43549.9	4 0 18343.	.59 0.144 0.034	43 0.605262 0.001368	0 0.000226	0.002 0.03185 0.00	1487 0 0.00	0.008	0.091 963.6905	136.6851 25.60031	0.005686 0.108022	0.030291 0.008533	0.002829 0.048554 0.0	26382 0.394722 0.1	48891 0.038757 0.2	204501 2.085419 0.038	496 0.575977 0.163	017 0.038757 0.204	01 2.085419 0	0.878989	3.762499 3.300689 0	009527 0.001351	0.000253
San Mateo	2023 LHDT2	Aggregate Aggregate Diesel	1952.709 77798.97 77798.9	7 0 24562.0	.62 0.883685 1.6794	82 0 0.023677	0.026872 0	0.003 0.03185 0.024	4747 0.028087	0 0.012	0.091 747.9998	204.9987 0	0.006098 0.005098	0 0.117848	0.032298 0 0.1	31288 0.10976	0 0	0 0.149	463 0.124954	0 0	0 0 0	1.196309 0.303972	0.909745 0 0	007088 0.001942	2 0
San Mateo	2023 MCY	Aggregate Aggregate Gasoline	12536.77 73820.04 73820.0	4 0 25073.	.54 0.537143	0 0.136291 0.001883	0 0.003663	0.001 0.0042 0.003	2012 0 0.00	3894 0.004	0.012 187.6396	0 47.90752	0.151085 0	0.181429 0.037735	0 0.008058 0.	98245 0 1.3	47169 3.555217 3.7	717102 3.435381 1.181	139 0 1.464	498 3.555217 3.717	02 3.435381 0	.008844 11.57445	0 7.838613 0	.001855 0	J 0.000474
San Mateo	2023 MDV	Aggregate Aggregate Gasoline	78398.02 2704273 270423	3 0 3744	08 0.068743	0 0.362909 0.001222	0 0.002069	0.002 0.002734 0.00	1329 0 0.00	2251 0.008	0.00781 408.872	0 104.3819	0.002844 0	0.089064 0.005703	0 0.037349 0.	01161 0 0.4	37746 0.072395 0.1	194625 1.190411 0.016	926 0 0.479	274 0.072395 0.194	25 1.190411 0	0.038092 0.747341	0 3.739188 0	.004042 0	J 0.001032
San Mateo	2023 MDV	Aggregate Aggregate Diesel	1107.903 37908.13 37908.1	3 0 5305.8	18 0.04176	0 0.004328	0 0	0.002 0.002788 0.004	4524 0	0 0.008 0	0.007965 410.1053	0 0	0.000449 0	0 0.064612	0 0.0	09665 0	0 0	0 0 0.011	02 0	0 0	0 0	0.0031 0.175602	0 0 0	.003886 0	J 0
San Mateo	2023 MDV	Aggregate Aggregate Electricity	906.5115 28548.82	0 28548.82 4657.03	121 0	0 0 0	0 0	0.002 0.001524	0 0	0 0.008 0	0.004354 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	, 0
San Mateo	2023 MDV	Aggregate Aggregate Plug-in Hy	¢ 678.1174 27547.88 13448.4	7 14099.41 2804.0	15 0.003136	0 0.117199 0.000578	0 0.002002	0.002 0.001322 0.00	0 0.00	2177 0.008 0	0.003776 131.6991	0 97.50736	0.000409 0	0.04268 0.00055	0 0.020553 0.0	01318 0 0.1	76635 0.027976 0.0	26258 0.325091 0.001	923 0 0.193	393 0.027976 0.026	58 0.325091 0	0.020504 0.196536	0 1.37819 0	.001302 0	J 0.000964
San Mateo	2023 MH	Aggregate Aggregate Gasoline	774.8115 7442.976 7442.97	6 0 77.512	15 0.375927	0 0.404893 0.001719	0 0.000436	0.003 0.015756 0.00	1869 0 0.00	0474 0.012 0	0.045017 1947.17	0 31.89355	0.01417 0	0.038105 0.023764	0 0.042528 0.0	61382 0 0.	16244 11.11371 0.2	261936 3.902966 0.089	569 0 0.177	852 11.11371 0.261	36 3.902966 0	.044861 1.492455	0 3.64337	0.01925 0	J 0.000315
San Mateo	2023 MH	Aggregate Aggregate Diesel	328.5822 3487.262 3487.26	2 0 32.858	22 3.229197	0 0.055455	0 0	0.004 0.015675 0.05	7962 0	0 0.016 0	0.044785 1085.349	0 0	0.004377 0	0 0.170997	0 0.0	94242 0	0 0	0 0.107	288 0	0 0	0 0 0	185977 0.297993	0 0 0	.010284 0	J 0
San Mateo	2023 MHDT	Aggregate Aggregate Gasoline	780.1924 45998.29 45998.3	9 0 15610.0	.09 0.48063 0.0884	85 0.45368 0.001377	0 0.000542	0.003 0.015756 0.00	1498 0 0.0	0.012 0	0.045017 1763.945	530.3326 46.39494	0.015519 0.261469	0.049092 0.023565	0.00737 0.034436 0.0	76573 1.012695 0.2	70574 0.033571 0.2	274671 2.598982 0.111	736 1.477722 0.296	245 0.033571 0.274	71 2.598982 0	044979 1.599932	15.11623 5.97113 0	017438 0.005243	0.000459
San Mateo	2023 MHDT	Aggregate Aggregate Diesel	4189.443 175901.2 175901	2 0 50462.4	49 1.42648 14.094	75 1.586053 0.018782	0.040011 0	0.003 0.015983 0.015	9631 0.041821	0 0.012 0	0.045665 1155.919	2264.351 0	0.002009 0.012779	0 0.182115	0.356749 0 0.0	43248 0.275121	0 0	0 0.049	234 0.313205	0 0	0 0 0	206918 0.148734	7.579195 0 0	010946 0.021442	2 0
San Mateo	2023 MHDT	Aggregate Aggregate Electricity	2.059294 44.11104	0 44.11104 25.565	i96 0	0 0 0	0 0	0.003 0.007991	0 0	0 0.012 0	0.022833 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	J 0
San Mateo	2023 MHDT	Aggregate Aggregate Natural G	a 38.13508 1832.77 1832.	7 0 342.20	75 0.132951 6.6095	44 0 0.001228	0.018659 0	0.003 0.016094 0.003	1336 0.020293	0 0.012 0	0.045982 1008.408	5458.884 0	0.769477 17.52611	0 0.20557	1.112829 0 0.0	10994 0.250414	0 0	0 0.785	307 17.88668	0 0	0 0	1.06 3.064735	35.81803 0	0 0	J 0
San Mateo	2023 OBUS	Aggregate Aggregate Gasoline	256.5607 15177.04 15177.0	4 0 5133.26	67 0.308106 0.0650	63 0.369453 0.001	0 0.000287	0.003 0.01568 0.00	1088 0 0.00	0.012 0.012 0	0.044799 1742.276	373.6354 30.27704	0.009595 0.205564	0.033157 0.017281	0.005903 0.031894 0.0	45405 0.746279 0.1	63878 0.026481 0.1	113352 1.902307 0.066	255 1.088969 0.179	425 0.026481 0.113	52 1.902307 0	0.044919 0.985887	5.774707 3.460301 0	017224 0.003694	+ 0.000299
San Mateo	2023 OBUS	Aggregate Aggregate Diesel	1051.799 74746.95 74746.9	5 0 10288.	18 0.843686 5.7795	48 1.508936 0.009565	0.003378 0	0.003 0.017376 0.00	9998 0.003531	0 0.012 0	0.049647 1250.895	1225.784 0	0.000947 0.013995	0 0.197079	0.193123 0 0.0	20398 0.301313	0 0	0 0.023	222 0.343022	0 0	0 0 0	217631 0.094166	5.629794 0 0	011845 0.011607	/ 0
San Mateo	2023 OBUS	Aggregate Aggregate Natural G	a 6.660994 415.1452 415.145	2 0 59.282	85 0.232948 1.5568	82 0 0.000856	0.003435 0	0.003 0.016148 0.00	0.003736	0 0.012 0	0.046137 1029.36	1194.248 0	0.766347 4.477255	0 0.209842	0.243455 0 0.	01095 0.063971	0 0	0 0 0.782	113 4.569367	0 0	0 0	1.06 3.19115	6.306096 0	0 0	J 0
San Mateo	2023 SBUS	Aggregate Aggregate Gasoline	62.11288 3411.923 3411.92	3 0 248.45	15 0.897656 0.9232	88 0.643317 0.001164	0 0.000721	0.002 0.015721 0.00	1266 0 0.00	0784 0.008 0	0.044917 797.3184	2541.99 62.30631	0.021738 2.445795	0.089765 0.041731	0.084017 0.05658 0.1	06456 10.59413 0.5	21132 0.139121 0.4	406864 2.094566 0.15	534 15.45893 0.570	574 0.139121 0.406	64 2.094566	0.045 2.707181	81.95312 13.2835 0	.007882 0.02513	J 0.000616
San Mateo	2023 SBUS	Aggregate Aggregate Diesel	168.8118 3793.041 3793.04	1 0 2444.3	195 5.00314 23.871	72 0.437587 0.023953	0.025817 0	0.003 0.015721 0.02	5036 0.026985	0 0.012 0	0.044917 1149.738	2246.853 0	0.003233 0.008312	0 0.181142	0.353993 0 0.0	69615 0.178964	0 0	0 0.079	252 0.203737	0 0	0 0 0	134019 0.208594	4.289616 0 0	010887 0.021276	0 د
San Mateo	2023 SBUS	Aggregate Aggregate Electricity	0.041475 0.481131	0 0.481131 0.6005	i64 0	0 0 0	0 0	0.003 0.00785	0 0	0 0.012 0	0.022459 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	, 0
San Mateo	2023 SBUS	Aggregate Aggregate Natural G	a 6.023036 153.4041 153.404	1 0 87.213	156 0.556332 5.2642	61 0 0.003378	0.011516 0	0.003 0.015721 0.003	3674 0.012524	0 0.012 0	0.044917 1258.036	4080.42 0	3.408583 15.17474	0 0.256459	0.83182 0 0.0	48702 0.216817	0 0	0 0 3.478	709 15.48694	0 0	0 0	1.06 11.51682	21.10371 0	0 0	, 0
San Mateo	2023 UBUS	Aggregate Aggregate Gasoline	61.26278 4165.676 4165.67	6 0 245.05	11 0.037017	0 0.578233 0.000989	0 0.000127	0.002073 0.032333 0.00	1076 0 0.00	0139 0.00829 0	0.092379 1025.682	0 41.23868	0.002259 0	0.053565 0.004956	0 0.077039 0.0	06631 0 0.2	06281 0.070589 0.1	114555 0.693653 0.009	577 0 0.225	852 0.070589 0.114	55 0.693653	0.045 0.556154	0 5.887541	0.01014 0	0.000408
San Mateo	2023 UBUS	Aggregate Aggregate Diesel	341.8463 28540.62 28540.8	2 0 1367.3	185 2.897593	0 0.007619	0 0	0.007913 0.0385 0.00	7964 0	0 0.031652	0.11 1451.453	0 0	0.007311 0	0 0.228677	0 0.1	57395 0	0 0	0 0.179	182 0	0 0	0 0 0	1.122644 0.192989	0 0 0	.013753 0	, 0
San Mateo	2023 UBUS	Aggregate Aggregate Electricity	2.018703 15.3193	0 15.3193 8.0748	11 0	0 0 0	0 0	0.009 0.01925	0 0	0 0.036	0.055 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	, 0
San Mateo	2023 UBUS	Aggregate Aggregate Natural G	a 34.94319 1199.611 1199.61	1 0 139.77	28 0.063405	0 0.000296	0 0	0.008789 0.0385 0.00	0 000	0 0.035157	0.11 1349.38	0 0	4.445831 0	0 0.27508	0 0 0.0	63522 0	0 0	0 0 4.537	297 0	0 0	0 0	0.97 52.53671	0 0	0 0	, 0

Attachment 4: Project Construction Emissions and Health Risk Calculations

Bertoluccis, South San Francisco, CA

DPM Construction Emissions and Modeling Emission Rates - Without Mitigation

								Emissions
								per
Construction		DPM	Source	No.	DI	PM Emissio	ns	Point Source
Year	Activity	(ton/year)	Туре	Sources	(lb/yr)	(lb/hr)	(g/s)	(g/s)
2023	Construction	0.0823	Point	60	164.7	0.05012	6.32E-03	1.05E-04
Total		0.0823			164.7	0.0501	0.0063	

Emissions assumed to be evenly distributed over each construction areas

 $hr/day = 9 \quad (8am-5pm)$ days/yr = 365hours/year = 3285

Bertoluccis, South San Francisco, CA

PM2.5 Fugitive Dust Construction Emissions for Modeling - Without Mitigation

Construction		Area		PM2.5	Fmissions		Modeled Area	DPM Emission Rate
Year	Activity	Source	(ton/year)	(lb/yr)	(lb/hr)	(g/s)	$-\frac{1}{(m^2)}$	$g/s/m^2$
2023	Construction	CON_FUC	6 0.0177	35.4	0.01077	1.36E-03	2709.7	5.01E-07
Total			0.0177	35.4	0.0108	0.0014		

Emissions assumed to be evenly distributed over each construction areas

 $\begin{array}{rll} hr/day = & 9 & (8am - 5pm) \\ days/yr = & 365 \\ hours/year = & 3285 \end{array}$

								Emissions
								per
Construction		DPM	Source	No.	DPM Emissions			Point Source
Year	Activity	(ton/year)	Туре	Sources	(lb/yr)	(lb/hr)	(g/s)	(g/s)
2023	Construction	0.0050	Point	60	10.0	0.00305	3.85E-04	6.41E-06
Total		0.0050			10.0	0.0031	0.0004	

DPM Construction Emissions and Modeling Emission Rates - With Mitigation

Emissions assumed to be evenly distributed over each construction areas

 $hr/day = 9 \quad (8am-5pm)$ days/yr = 365hours/year = 3285

PM2.5 Fugitive Dust Construction Emissions for Modeling - With Mitigation

								DPM
							Modeled	Emission
Construction		Area		PM2.5	Emissions		Area	Rate
Year	Activity	Source	(ton/year)	(lb/yr)	(lb/hr)	(g/s)	(m^2)	$g/s/m^2$
2023	Construction	CON_FUC	G 0.0086	17.2	0.00524	6.60E-04	2709.7	2.44E-07
Total			0.0086	17.2	0.0052	0.0007		

Emissions assumed to be evenly distributed over each construction areas

 $hr/day = 9 \quad (8am-5pm)$ days/yr = 365hours/year = 3285

Bertoluccis, South San Francisco, CA Construction Health Impact Summary

Maximum Impacts at MEI Location - Without Mitigation

					1	1
	Maximum Conc	entrations				Maximum
	Exhaust	Fugitive	Cancer	· Risk	Hazard	Annual PM2.5
Emissions	PM10/DPM	PM2.5	(per m	illion)	Index	Concentration
Year	$(\mu g/m^3)$	$(\mu g/m^3)$	Infant/Child	Adult	(-)	(μg/m ³)
2023	0.3532	0.0935	62.82	1.01	0.07	0.45
Total	-	-	62.82	1.01		-
Maximum	0.3532	0.0935	-	-	0.07	0.45

Maximum Impacts at MEI Location - With Mitigation

	Maximum Cond	centrations				Maximum
	Exhaust	Fugitive	Cancer	· Risk	Hazard	Annual PM2.5
Emissions	PM10/DPM	PM2.5	(per mi	illion)	Index	Concentration
Year	(μg/m ³)	$(\mu g/m^3)$	Infant/Child	Adult	(-)	$(\mu g/m^3)$
2023	0.0215	0.0456	3.83	0.06	0.00	0.07
Total	-	-	3.83	0.06	-	-
Maximum	0.0215	0.0456	-	-	0.00	0.07

- Tier 4 Interim Engine, BMP Mitigation, and electric welders as mitigation

Bertoluccis, South San Francisco, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 7.6 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)⁻¹ ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factorEF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

	I	nfant/Child		Adult		
Age>	3rd Trimester	0 - 2	2 - 16	16-30		
Parameter						
ASF =	10	10	3	1		
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00		
DBR* =	361	1090	572	261		
A =	1	1	1	1		
EF =	350	350	350	350		
AT=	70	70	70	70		
FAH =	1.00	1.00	1.00	0.73		

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

				Infant/Child - Exposure In		Information	Infant/Child	Adult - Exp	Adult - Exposure Information		Adult			
		Expos ure				Age	Cancer	Model	ed	Age	Cancer		Maximum	
	Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
	Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
Г	0	0.25	-0.25 - 0*	2023	0.3284	10	4.47	2023	0.3284	-	-			
	1	1	0 - 1	2023	0.3284	10	53.94	2023	0.3284	1	0.94	0.066	0.03	0.36
	2	1	1 - 2		0.0000	10	0.00		0.0000	1	0.00			
	3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00			
	4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00			
	5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00			
	6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00			
	7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00			
	8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00			
	9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00			
	10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00			
	11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00			
	12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00			
	13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00			
	14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00			
	15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00			
	16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00			
	17	1	16-17		0.0000	1	0.00		0.0000	1	0.00			
	18	1	17-18		0.0000	1	0.00		0.0000	1	0.00			
	19	1	18-19		0.0000	1	0.00		0.0000	1	0.00			
	20	1	19-20		0.0000	1	0.00		0.0000	1	0.00			
	21	1	20-21		0.0000	1	0.00		0.0000	1	0.00			
	22	1	21-22		0.0000	1	0.00		0.0000	1	0.00			
	23	1	22-23		0.0000	1	0.00		0.0000	1	0.00			
	24	1	23-24		0.0000	1	0.00		0.0000	1	0.00			
	25	1	24-25		0.0000	1	0.00		0.0000	1	0.00			
	26	1	25-26		0.0000	1	0.00		0.0000	1	0.00			
	27	1	26-27		0.0000	1	0.00		0.0000	1	0.00			
	28	1	27-28		0.0000	1	0.00		0.0000	1	0.00			
	29	1	28-29		0.0000	1	0.00		0.0000	1	0.00			
	30	1	29-30		0.0000	1	0.00		0.0000	1	0.00			
Т	otal Increas	ed Cancer R	lisk				58.41				0.94			

Total Increased Cancer Risk * Third trimester of pregnancy

Bertoluccis, South San Francisco, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 4.5 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)⁻¹ ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$ Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factorEF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

	I	nfant/Child		Adult		
Age>	3rd Trimester	0 - 2	2 - 16	16-30		
Parameter						
ASF =	10	10	3	1		
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00		
DBR* =	361	1090	572	261		
A =	1	1	1	1		
EF =	350	350	350	350		
AT=	70	70	70	70		
FAH =	1.00	1.00	1.00	0.73		

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child - Exp		I - Exposure l	Information	Infant/Child	tt/Child Adult - Exposure Information		mation	Adult			
		Exposure				Age	Cancer	Model	ed	Age	Cancer		Maximum	
	Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
L	Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
ſ	0	0.25	-0.25 - 0*	2023	0.3532	10	4.80	2023	0.3532	-	-			
	1	1	0 - 1	2023	0.3532	10	58.02	2023	0.3532	1	1.01	0.071	0.094	0.45
	2	1	1 - 2		0.0000	10	0.00		0.0000	1	0.00			
	3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00			
	4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00			
	5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00			
	6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00			
	7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00			
	8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00			
	9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00			
	10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00			
	11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00			
	12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00			
	13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00			
	14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00			
	15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00			
	16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00			
	17	1	16-17		0.0000	1	0.00		0.0000	1	0.00			
	18	1	17-18		0.0000	1	0.00		0.0000	1	0.00			
	19	1	18-19		0.0000	1	0.00		0.0000	1	0.00			
	20	1	19-20		0.0000	1	0.00		0.0000	1	0.00			
	21	1	20-21		0.0000	1	0.00		0.0000	1	0.00			
	22	1	21-22		0.0000	1	0.00		0.0000	1	0.00			
	23	1	22-23		0.0000	1	0.00		0.0000	1	0.00			
	24	1	23-24		0.0000	1	0.00		0.0000	1	0.00			
	25	1	24-25		0.0000	1	0.00		0.0000	1	0.00			
	26	1	25-26		0.0000	1	0.00		0.0000	1	0.00			
	27	1	26-27		0.0000	1	0.00		0.0000	1	0.00			
	28	1	27-28		0.0000	1	0.00		0.0000	1	0.00			
	29	1	28-29		0.0000	1	0.00		0.0000	1	0.00			
	30	1	29-30		0.0000	1	0.00		0.0000	1	0.00			
ŀ	Fotal Increas	ed Cancer R	lisk		1		62.82			1	1.01			

Total Increased Cancer Risk * Third trimester of pregnancy
Bertoluccis, South San Francisco, CA - Construction Impacts - Without Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 1.5 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)⁻¹ ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$ Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factorEF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

	1	Infant/Child								
Age>	3rd Trimester	16-30								
Parameter										
ASF =	10	10	3	1						
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00						
DBR* =	361	1090	572	261						
A =	1	1	1	1						
EF =	350	350	350	350						
AT=	70	70	70	70						
FAH =	1.00	1.00	1.00	0.73						

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

				Infant/Child	l - Exposure l	Information	Infant/Child	Adult - Exp	osure Infor	mation	Adult			
		Exposure				Age	Cancer	Model	ed	Age	Cancer		Maximum	
	Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
L	Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
ſ	0	0.25	-0.25 - 0*	2023	0.1773	10	2.41	2023	0.1773	-	-			
	1	1	0 - 1	2023	0.1773	10	29.13	2023	0.1773	1	0.51	0.04	0.159	0.34
	2	1	1 - 2		0.0000	10	0.00		0.0000	1	0.00			
	3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00			
	4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00			
	5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00			
	6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00			
	7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00			
	8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00			
	9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00			
	10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00			
	11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00			
	12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00			
	13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00			
	14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00			
	15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00			
	16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00			
	17	1	16-17		0.0000	1	0.00		0.0000	1	0.00			
	18	1	17-18		0.0000	1	0.00		0.0000	1	0.00			
	19	1	18-19		0.0000	1	0.00		0.0000	1	0.00			
	20	1	19-20		0.0000	1	0.00		0.0000	1	0.00			
	21	1	20-21		0.0000	1	0.00		0.0000	1	0.00			
	22	1	21-22		0.0000	1	0.00		0.0000	1	0.00			
	23	1	22-23		0.0000	1	0.00		0.0000	1	0.00			
	24	1	23-24		0.0000	1	0.00		0.0000	1	0.00			
	25	1	24-25		0.0000	1	0.00		0.0000	1	0.00			
	26	1	25-26		0.0000	1	0.00		0.0000	1	0.00			
	27	1	26-27		0.0000	1	0.00		0.0000	1	0.00			
	28	1	27-28		0.0000	1	0.00		0.0000	1	0.00			
	29	1	28-29		0.0000	1	0.00		0.0000	1	0.00			
	30	1	29-30		0.0000	1	0.00		0.0000	1	0.00			
ŀ	Fotal Increas	ed Cancer R	lisk				31.54				0.51			

Bertoluccis, South San Francisco, CA - Construction Impacts - With Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 7.6 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: CPF = Cancer potency factor (mg/kg-day)⁻¹ ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years) FAH = Fraction of time spent at home (unitless)

Inhalation Dose = $C_{air} x DBR x A x (EF/365) x 10^{-6}$

Where: $C_{air} = concentration in air (\mu g/m^3)$

DBR = daily breathing rate (L/kg body weight-day)

A = Inhalation absorption factorEF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

	1	Infant/Child								
Age ->	3rd Trimester	16-30								
Parameter										
ASF =	10	10	3	1						
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00						
DBR* =	361	1090	572	261						
A =	1	1	1	1						
EF =	350	350	350	350						
AT=	70	70	70	70						
FAH =	1.00	1.00	1.00	0.73						

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child	l - Exposure l	Information	Infant/Child	Adult - Exp	osure Infor	mation	Adult			
	Exposure				Age	Cancer	Model	ed	Age	Cancer		Maximum	
Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
0	0.25	-0.25 - 0*	2023	0.0200	10	0.27	2023	0.0200	-	-			
1	1	0 - 1	2023	0.0200	10	3.29	2023	0.0200	1	0.06	0.0040	0.016	0.04
2	1	1 - 2		0.0000	10	0.00		0.0000	1	0.00			
3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00			
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00			
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00			
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00			
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00			
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00			
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00			
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00			
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00			
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00			
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00			
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00			
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00			
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00			
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00			
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00			
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00			
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00			
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00			
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00			
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00			
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00			
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00			
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00			
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00			
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00			
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00			
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00			
Total Increas	ed Cancer R	lisk				3.56				0.06			

Bertoluccis, South San Francisco, CA - Construction Impacts - With Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 4.5 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless) Inhalation Dose = Cair x DBR x A x (EF/365) x 10⁻⁶

Where: $C_{air} = \text{concentration in air} (\mu g/m^3)$

 C_{arr} - concentration in an (µg) m) DBR = daily breathing rate (L/kg body weight-day) A = Inhalation absorption factor EF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

	I		Adult			
Age>	3rd Trimester	d Trimester 0 - 2 2 - 16				
Parameter						
ASF =	10	10	3	1		
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00		
DBR* =	361	1090	572	261		
A =	1	1	1	1		
EF =	350	350	350	350		
AT =	70	70	70	70		
FAH=	1.00	1.00	1.00	0.73		

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child	l - Expos ure 1	Information	Infant/Child	Adult - Exp	osure Infor	mation	Adult			
	Exposure				Age	Cancer	Model	ed	Age	Cancer	1	Maximum	I
Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
0	0.25	-0.25 - 0*	2023	0.0215	10	0.29	2023	0.0215	-	-			
1	1	0 - 1	2023	0.0215	10	3.53	2023	0.0215	1	0.06	0.004	0.05	0.07
2	1	1 - 2		0.0000	10	0.00		0.0000	1	0.00			
3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00			
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00			
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00			
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00			
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00			
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00			
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00			
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00			
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00			
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00			
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00			
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00			
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00			
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00			
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00			
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00			
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00			
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00			
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00			
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00			
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00			
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00			
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00			
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00			
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00			
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00			
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00			
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00			
Total Increas	ed Cancer R	lisk				3.83				0.06			

Bertoluccis, South San Francisco, CA - Construction Impacts - With Mitigation Maximum DPM Cancer Risk and PM2.5 Calculations From Construction Impacts at Off-Site MEI Location - 1.5 meter receptor height

Cancer Risk (per million) = CPF x Inhalation Dose x ASF x ED/AT x FAH x 1.0E6

Where: $CPF = Cancer potency factor (mg/kg-day)^{-1}$

ASF = Age sensitivity factor for specified age group

ED = Exposure duration (years)

AT = Averaging time for lifetime cancer risk (years)

FAH = Fraction of time spent at home (unitless) Inhalation Dose = Cair x DBR x A x (EF/365) x 10⁻⁶

Where: $C_{air} = \text{concentration in air} (\mu g/m^3)$

 $C_{arr} = concentration in an (µg) in f$ DBR = daily breathing rate (L/kg body weight-day)A = Inhalation absorption factorEF = Exposure frequency (days/year)

 10^{-6} = Conversion factor

Values

	I		Adult		
Age>	3rd Trimester	imester 0 - 2 2 - 16			
Parameter					
ASF =	10	10	3	1	
CPF =	1.10E+00	1.10E+00	1.10E+00	1.10E+00	
DBR* =	361	1090	572	261	
A =	1	1	1	1	
EF =	350	350	350	350	
AT =	70	70	70	70	
FAH =	1.00	1.00	1.00	0.73	

* 95th percentile breathing rates for infants and 80th percentile for children and adults

Construction Cancer Risk by Year - Maximum Impact Receptor Location

			Infant/Child	l - Expos ure 1	Information	Infant/Child	Adult - Exp	osure Infor	mation	Adult			
	Expos ure				Age	Cancer	Model	ed	Age	Cancer	1	Maximum	I
Exposure	Duration		DPM Conc	(ug/m3)	Sensitivity	Risk	DPM Conc	(ug/m3)	Sensitivity	Risk	Hazard	Fugitive	Total
Year	(years)	Age	Year	Annual	Factor	(per million)	Year	Annual	Factor	(per million)	Index	PM2.5	PM2.5
0	0.25	-0.25 - 0*	2023	0.0108	10	0.15	2023	0.0108	-	-			
1	1	0 - 1	2023	0.0108	10	1.77	2023	0.0108	1	0.03	0.002	0.08	0.00
2	1	1 - 2		0.0000	10	0.00		0.0000	1	0.00			
3	1	2 - 3		0.0000	3	0.00		0.0000	1	0.00			
4	1	3 - 4		0.0000	3	0.00		0.0000	1	0.00			
5	1	4 - 5		0.0000	3	0.00		0.0000	1	0.00			
6	1	5 - 6		0.0000	3	0.00		0.0000	1	0.00			
7	1	6 - 7		0.0000	3	0.00		0.0000	1	0.00			
8	1	7 - 8		0.0000	3	0.00		0.0000	1	0.00			
9	1	8 - 9		0.0000	3	0.00		0.0000	1	0.00			
10	1	9 - 10		0.0000	3	0.00		0.0000	1	0.00			
11	1	10 - 11		0.0000	3	0.00		0.0000	1	0.00			
12	1	11 - 12		0.0000	3	0.00		0.0000	1	0.00			
13	1	12 - 13		0.0000	3	0.00		0.0000	1	0.00			
14	1	13 - 14		0.0000	3	0.00		0.0000	1	0.00			
15	1	14 - 15		0.0000	3	0.00		0.0000	1	0.00			
16	1	15 - 16		0.0000	3	0.00		0.0000	1	0.00			
17	1	16-17		0.0000	1	0.00		0.0000	1	0.00			
18	1	17-18		0.0000	1	0.00		0.0000	1	0.00			
19	1	18-19		0.0000	1	0.00		0.0000	1	0.00			
20	1	19-20		0.0000	1	0.00		0.0000	1	0.00			
21	1	20-21		0.0000	1	0.00		0.0000	1	0.00			
22	1	21-22		0.0000	1	0.00		0.0000	1	0.00			
23	1	22-23		0.0000	1	0.00		0.0000	1	0.00			
24	1	23-24		0.0000	1	0.00		0.0000	1	0.00			
25	1	24-25		0.0000	1	0.00		0.0000	1	0.00			
26	1	25-26		0.0000	1	0.00		0.0000	1	0.00			
27	1	26-27		0.0000	1	0.00		0.0000	1	0.00			
28	1	27-28		0.0000	1	0.00		0.0000	1	0.00			
29	1	28-29		0.0000	1	0.00		0.0000	1	0.00			
30	1	29-30		0.0000	1	0.00		0.0000	1	0.00			
Total Increas	ed Cancer R	lisk				1.92				0.03			

Attachment 5: Community Risk Modeling Information and Calculations

Risk & Hazard Stationary Source Inquiry Form

This form is required when users request stationary source data from BAAQMD

This form is to be used with the BAAQMD's Google Earth stationary source screening tables.

Click here for guidance on coducting risk & hazard screening, including roadways & freeways, refer to the District's Risk & Hazard Analysis flow chart.

Click here for District's Recommended Methods for Screening and Modeling Local Risks and Hazards document.

Table A: Requester Contact Information							
Date of Request	1/3/2022						
Contact Name	Zachary Palm						
Affiliation	Illingworth & Rodkin, Inc.						
Phone	707-794-0400 x117						
Email	zpalm@illingworthrodkin.com						
Project Name	Bertoluccis						
	209, 213 Lux Ave and 421						
Address	Cypress Ave						
City	South San Francisco						
County	San Mateo						
Type (residential, commercial, mixed use, industrial, etc.)	Mixed Lice						
Project Size (# of	WIXEU USE						
units or building							
square feet)	99du						
Commonts:							

For Air District assistance, the following steps must be completed:

1. Complete all the contact and project information requested in

Table Ancomplete forms will not be processed. Please include a project site map.

2. Download and install the free program Google Earth, http://www.google.com/earth/download/ge/, and then download the county specific Google Earth stationary source application files from the District's website, http://www.baaqmd.gov/Divisions/Planning-and-Research/CEQA-GUIDELINES/Tools-and-Methodology.aspx. The small points on the map represent stationary sources permitted by the District (Map A on right). These permitted sources include dises lack-up generators, gas stations, dry cleaners, boilers, printers, auto spray booths, etc. Click on a point to view the source's Information Table, including the name, location, and preliminary estimated cancer risk, hazard index, and PM2.5 concentration.

3. Find the project site in Google Earth by inputting the site's address in the Google Earth search box.

4. Identify stationary sources within at least a 1000ft radius of project site. Verify that the location of the source on the map matches with the source's address in the Information Table, by using the Google Earth address search box to confirm the source's address location. Please report any mapping errors to the District.

5. List the stationary source information in

Table B lue section only.

6. Note that a small percentage of the stationary sources have Health Risk Screening Assessment (HRSA) data INSTEAD of screening level data. These sources will be noted by an asterisk next to the Plant Name (Map B on right). If HRSA values are presented, these values have already been modeled and cannot be adjusted further.

7. Email this completed form to District staff. District staff will provide the most recent risk, hazard, and PM2.5 data that are available for the source(s). If this information or data are not available, source emissions data will be provided. Staff will respond to inquiries within three weeks.

Note that a public records request received for the same stationary source information will cancel the processing of your SSIF request.

Submit forms, maps, and questions to Areana Flores at 415-749-4616, or aflores@baaqmd.gov

Table B: Google Earth data											Construction MEIs			
Distance from Receptor (feet) or MEI ¹	Plant No.	Facility Name	Address	Cancer Risk ² Haza	ard Risk ² PM _{2.5} ²	Source No. ⁵	³ Type of Source ⁴	Fuel Code⁵	Status/Comments	Distance Adjustment Multiplier	Adjusted Cancer Risk Estimate	Adjusted Hazard Risk	Adjusted PM2.5	
1000	15132	NOD Auto Body Shop Inc	206 Baden Ave	0.00	0048207		Auto Body Coating Operation		2018 Dataset	0.13	0.00	0.000	0.00	
150	20215	NOD Auto Body Shop Inc	110 Lux Ave	0.00)		Auto Body Coating Operation		2018 Dataset	0.70	0.00	0.000	0.00	
775	109214	Unocal #1020Grand Martco Inc	221 Airport Blvd	24.52 0.11	L		Gas Dispensing Facility		2018 Dataset	0.02	0.54	0.002	0.00	
670	200891	Chico's Service Station	401 LINDEN AVE	13.38 0.06	5		Gas Dispensing Facility		2018 Dataset	0.03	0.39	0.002	0.00	
190	201062	A&K Supreme Auto	510 CYPRESS AVE # 512	0.00	0482071		Auto Body Coating Operation		2018 Dataset	0.66	0.00	0.003	0.00	

Footnotes:			Project S	ite		
1. Maximally exposed individual	Distance from		Distance	Adjusted	Adjusted	
	Receptor (feet)		Adjustment	Cancer Risk	Hazard	Adjusted
	or MEI	FACID (Plant No.)	Multiplier	Estimate	Risk	PM2.5
2. These Cancer Risk, Hazard Index, and PM2.5 columns represent the values in the Google Earth Plant Information Table.	875	15132	0.17	0.00	0.000	0.000
3. Each plant may have multiple permits and sources.	150	20215	0.70	0.00	0.000	0.000
4. Permitted sources include diesel back-up generators, gas stations, dry cleaners, boilers, printers, auto spray booths, etc.	680	109214	0.03	0.69	0.003	0.000
5. Fuel codes: 98 = diesel, 189 = Natural Gas.	400	200891	0.07	0.88	0.004	0.000
6. If a Health Risk Screening Assessment (HRSA) was completed for the source, the application number will be listed here.	170	201062	0.68	0.00	0.003	0.000

7. The date that the HRSA was completed.

8. Engineer who completed the HRSA. For District purposes only.

9. All HRSA completed before 1/5/2010 need to be multiplied by an age sensitivity factor of 1.7.

10. The HRSA "Chronic Health" number represents the Hazard Index.

11. Further information about common sources:

a. Sources that only include diesel internal combustion engines can be adjusted using the BAAQMD's Diesel Multiplier worksheet.

b. The risk from natural gas boilers used for space heating when <25 MM BTU/hr would have an estimated cancer risk of one in a million or less, and a chronic hazard index of

c. BAAQMD Reg 11 Rule 16 required that all co-residential (sharing a wall, floor, ceiling or is in the same building as a residential unit) dry cleaners cease use of perc on July 1, 2010.

Therefore, there is no cancer risk, hazard or PM2.5 concentrations from co-residential dry cleaning businesses in the BAAQMD.

d. Non co-residential dry cleaners must phase out use of perc by Jan. 1, 2023. Therefore, the risk from these dry cleaners does not need to be factored in over a 70-year period, but instead should

e. Gas stations can be adjusted using BAAQMD's Gas Station Distance Mulitplier worksheet.

f. Unless otherwise noted, exempt sources are considered insignificant. See BAAQMD Reg 2 Rule 1 for a list of exempt sources.

g. This spray booth is considered to be insignificant.

Date last updated:

03/13/2018

Area of Interest (AOI) Information

Area : 3,878,091.61 ft²

Jan 3 2022 16:36:57 Pacific Standard Time

Permitted Facilities 2018

County of San Mateo, California, Bureau of Land Management, Esri, HERE, Garmin, INCREMENT P, Intermap, USGS, METI/NASA, EPA, USDA

0.3 km

0

0.07

0.15

Summary

Name	Count	Area(ft²)	Length(ft)
Permitted Facilities 2018	5	N/A	N/A

Permitted Facilities 2018

#	FACID	Name	Address	City	St
1	15132	NOD Auto Body Shop Inc	206 Baden Ave	South San Francisco	СА
2	20215	NOD Auto Body Shop Inc	110 Lux Ave	South San Francisco	CA
3	109214	Unocal #1020Grand Martco Inc	221 Airport Blvd	South San Francisco	CA
4	200891	Chico's Service Station	401 LINDEN AVE	S SAN FRAN	CA
5	201062	A&K Supreme Auto	510 CYPRESS AVE # 512	S SAN FRAN	СА

#	Zip	County	Cancer	Hazard	PM_25	Туре	Count
1	94080	San Mateo	0.000	0.000	0.000	Contact BAAQMD	1
2	94080	San Mateo	0.000	0.000	0.000	Contact BAAQMD	1
3	94080	San Mateo	24.520	0.110	0.000	Gas Dispensing Facility	1
4	94080	San Mateo	13.380	0.060	0.000	Gas Dispensing Facility	1
5	94080	Santa Clara	0.000	0.000	0.000	Contact BAAQMD	1

Note: The estimated risk and hazard impacts from these sources would be expected to be substantially lower when site specific Health Risk Screening Assessments are conducted.

The screening level map is not recommended for evaluating sensitive land uses such as schools, senior centers, day cares, and health facilities.

© Copyright 2018 Bay Area Air Quality Management District