AIR QUALITY STUDY

IN-N-OUT BURGER RESTAURANT PROJECT

972 El Camino Real South San Francisco, CA 94080

PREPARED FOR:

In-N-Out Burger 13502 Hamburger Lane Baldwin Park, CA 91706

PREPARED BY:

Westlake Village Office 860 Hampshire Road, Suite P Westlake Village, CA 91361

JULY 2024

Table of Contents

Section	Page
Executive Summary	
Project Description	2
Regulatory Setting	4
Environmental Setting	6
Methodology	
BAAQMD Air Quality Significance Thresholds	12
Impact Analysis	
Certification	20

i

Appendix

- A CalEEMod Air Quality Emission Output Files
 - A.1 Existing
 - A.2 Proposed

Figures

Figure	Pa	age
1	Project Site Location	3
	Sensitive Receptor Map	
	·	

Tables

Table		Page
1	Air Quality Monitoring Summary	6
2	San Francisco Bay Area Air Basin Attainment Status	7
3	Existing Operational Air Quality Emissions	8
4	Construction Thresholds	12
5	Operational Thresholds	13
6	Project Construction Schedule	14
7	Project Construction Diesel Equipment Inventory	15
8	Maximum Construction Emissions	16
9	Maximum Operational Emissions	17

The purpose of this air quality analysis is to provide an assessment of the impacts resulting from the In-N-Out Burger Restaurant Project (Project) and to identify any measures that may be necessary to reduce potentially significant impacts.

Standard Air Quality, Energy and GHG Regulatory Conditions

The proposed project would be required to comply with the following regulatory conditions from the Bay Area Air Quality Management District (BAAQMD) and State of California (State):

Bay Area Air Quality Management District Rules

The following lists the BAAQMD rules that are applicable, but not limited to, the proposed project:

- Regulation 6, (Particulate Matter): Sets standards and requirements for controlling and mitigating fugitive dust emissions at dust generating facilities.
- Regulation 7 (Odorous Substances): Places general limitation on odorous substances and specific emission limitations on certain odorous compounds;

State of California Rules

The following lists the State of California Code of Regulations (CCR) air quality emission rules that are applicable, but not limited to, the proposed project.

- CCR Title 13, Article 4.8, Chapter 9, Section 2449: In use Off-Road Diesel Vehicles
- CCR Title 13, Section 2025: On-Road Diesel Truck Fleets;
- CCR Title 24 Part 6: California Building Energy Standards; and
- CCR Title 24 Part 11: California Green Building Standards.

Construction Source Emissions

Construction emissions would not contribute to short- or long-term emissions that would increase the carcinogenic effects on sensitive receptors. Construction-source odor emissions would be temporary, short-term, and intermittent in nature and would not result in persistent impacts that would affect substantial numbers of people. Potential construction-source odor impacts are therefore not considered significant.

Operational Source Emissions

Operational emissions would not contribute to short- or long-term emissions that would increase the carcinogenic effects on sensitive receptors. Emissions associated with operation would not exceed the BAAQMD-recommended thresholds. Thus, the Project would not result in a regional violation of applicable air quality standards or jeopardize the timely attainment of such standards in the Basin.

The 65,493 square foot (1.504 acre) Project site is located at 972 and 934 El Camino Real in the City of South San Francisco (refer to **Figure 1: Project Site Location**). The Project site currently contains an operating one-story 3,000 square foot Burger King restaurant, consisting of 43 surface paved striped parking spaces with a 320-foot-long protected drive-thru lane and a 240-foot-long overflow vehicle stacked striped area. Additionally, the Project site contains an operating psychic boutique building with no striped parking spaces but with capacity to park vehicles on pavement and soil.

The Project would include removal of the existing uses for construction of a new 3,887-square foot In-N-Out Burger Restaurant with a drive-through lane. The restaurant would provide seating capacity of 112 people (84 seats indoor, 28 seats outdoor), a drive-through queuing lane with a capacity of up to 39 cars, landscaping, and parking spaces for up to 51 vehicles.

This restaurant will be equipped with three burger grills. Two grills will operate at all times, and activation of the third grill will be done in response to high dine-in or, more typically, high drive-through demand as activating the third grill significantly increases the speed at which drive-through orders are delivered to customer vehicles. Standard store operating procedure requires that as soon as the drive-through queue reaches the 8th or 9th car (where the menu board/order speaker is located), In-N-Out Associates are deployed outside to take orders using hand-held ordering tablets. The use of these tablets allows orders to funnel into the kitchen faster than ordering at the menu board resulting in the shortest possible drive-through vehicle queues. Awareness of the queue reaching the menu board (and deployment of associates with hand-held tablets) is enhanced with outdoor cameras and indoor monitors. There will be between 4 and 6 outdoor cameras on this site, with 3 or 4 of them specifically viewing the drive-through lane. These cameras display on multiple monitors located inside the restaurant including at the manager's office, above the grills, and at both the pay and pickup windows.

There is no delivery dock or designated delivery parking bay required on the premises as deliveries are made only by In-N-Out owned operated vehicles, after the restaurant is closed to the public between the hours of 2:00 AM and 9:00 AM. Delivery trucks operate after hours to allow the parking and queue management to be at its most effective throughout the day. Allowing trucks to deliver after-hours ensures that truck traffic is not on the road during either morning or evening peak hours. Site access for these delivery trucks would be from El Camino Real and would unload at the service entrance located adjacent to parking stalls #1 through #9.

The restaurant would operate seven days a week, from 10:00 AM to 1:00 AM Sunday through Thursday, and from 10:00 AM to 1:30 AM on Friday and Saturday. The restaurant, drive-through, and parking lot, as with all In-N-Out Burgers restaurants, would be well-lit and meticulously maintained. The restaurant would be staffed by approximately 10 to 12 associates per shift, with 3 shifts per day.

SOURCE: Google Earth - 2024

Meridian Consultants

Project Site Location

FIGURE 1

In California, jurisdiction over air quality management, enforcement, and planning is divided among 35 geographic regions. Within each region, a local air district is responsible for oversight of air quality monitoring, modeling, permitting, and enforcement to ensure that regulatory violations are avoided wherever possible.

Bay Area Air Quality Management District

The Bay Area Air Quality Management District (BAAQMD) is responsible for establishing and managing air quality standards in the Air Basin, as well as maintaining compliance with federal and State air quality standards. For air basins not in compliance with the federal Clean Air Act and the California Clean Air Act, management districts are required to develop plans to improve air quality and comply with federal and State standards. BAAQMD's 2017 Bay Area Clean Air Plan was adopted in April 2017 and provides a regional strategy to improve air quality and reduce GHG emissions, consistent with State policy, to 40 percent below 1990 levels by 2030 and 80 percent below 1990 levels by 2050. BAAQMD's 2022 CEQA Air Quality Guidelines² (2022 Guidelines) provide guidance to lead agencies in reviewing projects for construction and operational activity emissions that may have an adverse impact on air quality in the region.

The thresholds referenced in the 2022 Guidelines were designed to establish the level at which BAAQMD believed GHG emissions would result in a considerable contribution to climate change and could conflict with the State's overall efforts to meet GHG reduction targets by 2020. Considering recent passage of SB 32, which sets into law the mandated reduction target in GHG emissions as written into Executive Order B-30-15 (i.e., 40 percent below 1990 levels by 2030), the current guidance and thresholds of significance that only considered 2020-year emissions targets are in need of an update. Currently, BAAQMD is in the process of updating its CEQA Guidelines, which will include thresholds of significance that land use development projects would be able to use to determine significance with respect to 2030 Statewide GHG emissions targets. However, at this time no updated guidelines have been adopted.

Rules and Regulations

Regulation 6, Particulate Matter

BAAQMD's Regulation 6, Particulate Matter, places limits the quantity of particulate matter in the atmosphere through the establishment of limitations on emission rates, concentration, visible emissions and opacity.

_

Bay Area Air Quality Management District, Final 2017 Clean Air Plan, adopted April 19, 2017.

Bay Area Air Quality Management District, CEQA Thresholds and Guidelines Update, https://www.baaqmd.gov/plans-and-climate/california-environmental-quality-act-ceqa/updated-ceqa-guidelines, accessed March 2024

Regulation 7, Odorous Substances

BAAQMD's Regulation 7, Odorous Substances, places general limitations on odorous substances and specific emission limitations on certain odorous compounds. The limitations of this Regulation shall not be applicable until the Air Pollution Control Officer (APCO) receives odor complains from ten or more complainants within a 90-day period, alleging that a person has caused odors perceived at or beyond the property line of such person and deemed to be objectionable by the complainants in the normal course of their work, travel or residences.

Odors are also regulated under BAAQMD Regulation 1, Rule 1-301, Public Nuisance, which states that "no person shall discharge from any source whatsoever such quantities of air contaminants or other material which cause injury, detriment, nuisance or annoyance to any considerable number of persons or the public; or which endangers the comfort, repose, health or safety of any such persons or the public, or which causes, or has a natural tendency to cause, injury or damage to business or property." It should be noted that while restaurants can generate odors, these sources are not identified by BAAQMD as nuisance odors since they typically do not generate significant odors that affect a substantial number of people.

Under BAAQMD's Regulation 1, Rule 1-301, a facility that receives three or more violation notices within a 30-day period can be declared a public nuisance.

Regional Air Quality

USEPA is the federal agency responsible for overseeing the country's air quality and setting the NAAQS for the CAPs. The NAAQS were devised based on extensive modeling and monitoring of air pollution across the country; they are designed to protect public health and prevent the formation of atmospheric ozone. Air quality of a region is considered to be in attainment of the NAAQS if the measured ambient air pollutant levels do not exceed the applicable concentration threshold.

As noted previously, CARB is the State agency responsible for setting the CAAQS. Air quality of a region is considered to be in attainment of the CAAQS if the measured ambient air pollutant levels for O3, CO, NO2, SO2, PM10, PM2.5, and Pb are not exceeded, and all other standards are not equaled or exceeded at any time in any consecutive 3-year period.

The nearest air monitoring station BAAQMD operates is the San Francisco-Arkansas station located at 10 Arkansas Street in the City of San Francisco. This station monitors 03, NO2 and PM10 and PM2.5. **Table 1: Air Quality Monitoring Summary** summarizes published monitoring data from 2020 through 2022, the most recent 3-year period available. The data shows that during the past few years, the region has not exceeded state and federal standards.

TABLE 1: AIR QUALITY MONITORING SUMMARY				
Air Pollutant	Average Time (Units)	2020	2021	2022
	State Max 1 hour (ppm)	0.088	0.074	0.070
	Days > CAAQS threshold (0.09 ppm)	0	0	0
Ozone (O3)	National Max 8 hour (ppm)	0.055	0.054	0.060
0201le (03)	Days > NAAQS threshold (0.075 ppm)	0	0	0
	State Max 8 hour (ppm)	0.056	0.055	0.061
	Days > CAAQS threshold (0.07 ppm)	0	0	0
Carbon monoxide (CO)		_	_	_
Nii - 1 - 1 - 4100	National Max 1 hour (ppm)	0.48	0.50	0.46
	Days > NAAQS threshold (0.100 ppm)	0	0	0
Nitrogen dioxide (NO2)	State Max 1 hour (ppm)	0.47	0.49	0.46
	Days > CAAQS threshold (0.18 ppm)	0	0	0
	National Max (µg/m3)	102.3	32.2	342.2
	National Annual Average (µg/m3)	12.0	8.2	7.7
Respirable particulate matter (PM10)	Days > NAAQS threshold (35 μg/m3)	0	0	0
	State Max (µg/m3)	105.0	33.0	36.0
	State Annual Average (µg/m3)	23.3	16.1	_
	National Max (µg/m3)	102.3	32.2	34.2
Fine particulate matter (PM2.5)	National Annual Average (µg/m3)	12.0	8.2	7.7
	Days > NAAQS threshold (35 μg/m3)	0	0	0

TABLE 1: AIR QUALITY MONITORING SUMMARY					
Air Pollutant	Average Time (Units)	2020	2021	2022	
	State Max (µg/m3)	105.0	33.0	36.0	
	State Annual Average (µg/m3)	23.3	16.1	_	

Source: CARB, iADAM: Air Quality Data Statistics.

Note: (-) = Data not available.

USEPA and the CARB designate air basins where AAQS are exceeded as "nonattainment" areas. If standards are met, the area is designated as an "attainment" area. If there is inadequate or inconclusive data to make a definitive attainment designation, they are considered "unclassified." Federal nonattainment areas are further designated as marginal, moderate, serious, severe, or extreme as a function of deviation from standards. The current attainment designations for the Basin are shown in **Table 2: San Francisco Bay Area Air Basin Attainment Status**. The Basin is currently designated as being in nonattainment at the federal level for O3 and PM2.5; and at the State level for O3, PM10, and PM2.5.

TABLE 2: SAN FRANCISCO BAY AREA AIR BASIN ATTAINMENT STATUS					
Pollutant	State Status	National Status			
Ozone (O3)	Nonattainment	Nonattainment			
Carbon monoxide (CO)	Attainment	Unclassified/Attainment			
Nitrogen dioxide (NO2)	Attainment	Unclassified/Attainment			
Sulfur dioxide (SO2)	Attainment	Unclassified/Attainment			
Respirable particulate matter (PM10)	Nonattainment	Unclassified			
Fine particulate matter (PM2.5) Nonattainment Nonattainment					

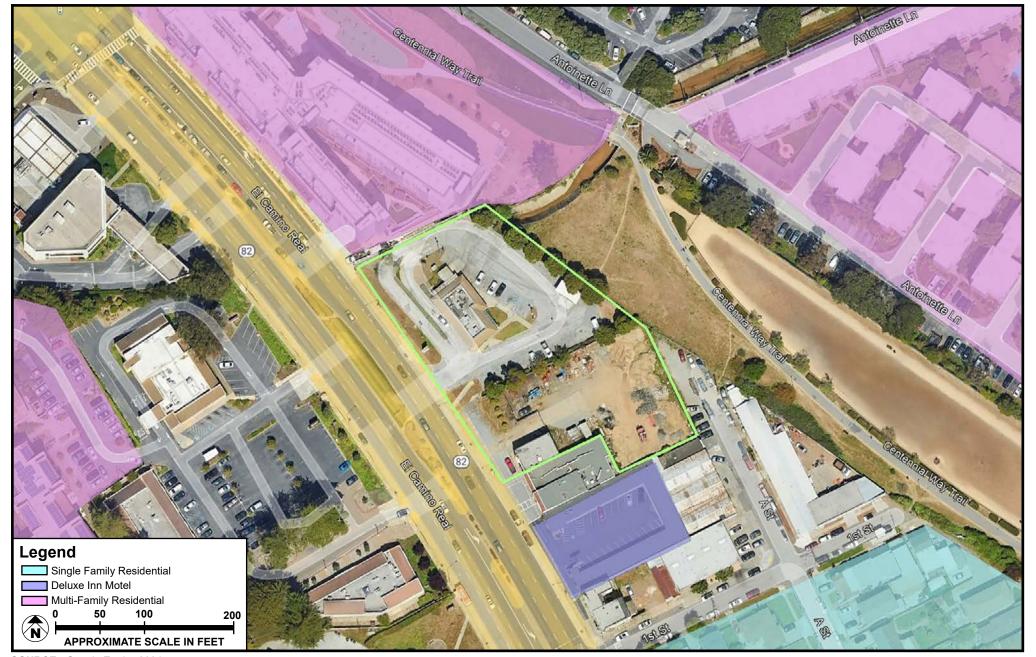
Source: California Air Resources Board (CARB) Area Designation Maps / State and National,

https://ww2.arb.ca.gov/resources/documents/maps-state-and-federal-area-designations. Accessed March 2024.

Existing Operational Emission

As mentioned previously, the Project site is currently developed with an operating one-story 3,000 square foot Burger King restaurant and a psychic boutique building. **Table 3: Existing Operational Air Quality Emissions** identifies the emissions from the existing uses. Operational emissions currently result primarily from passenger vehicles traveling to and from the Project site. As identified in the transportation study scoping agreement³, the existing uses currently generate 1,402 daily trips including 134 mid-day peak hour trips and 100 PM peak hour trips (without incorporation of 50 percent pass-by reduction). The most current CARB-approved, BAAQMD-recommended air quality modeling software, the California Emissions Estimator Model (CalEEMod), was used to estimate existing air quality operational emissions.

³ Ganddini Group, Inc, *Transportation Study Scoping Agreement for In-N-Out Burger (972 El Camino Real) Project*, dated February 26, 2024.


TABLE 3: EXISTING O	PERATIONAL A	AIR QUALITY E	MISSIONS	
	ROG	NOx	PM10	PM2.5
Source		pounds/	day	
Mobile	5.5	5.2	13.0	3.3
Area	0.1		< 0.1	<0.1
Energy	<0.1	0.1	< 0.1	< 0.1
Total	5.6	5.3	13	3.3
BAAQMD Mass Daily Threshold	54	54	82	54
Threshold exceeded?	No	No	No	No
		tons/ye	ar	
Mobile	0.7	0.5	1.0	0.3
Area	<0.1	<0.1	<0.1	<0.1
Energy	<0.1	<0.1	<0.1	<0.1
Total	0.7	0.5	1.0	0.3
BAAQMD Mass Daily Threshold	10	10	15	10
Threshold exceeded?	No	No	No	No

Notes: Totals in table may not appear to add exactly due to rounding in the computer model calculations. Refer to Appendix A.2: CalEEMod Air Quality Emission Output Files (Proposed).

Sensitive Receptors

BAAQMD considers a sensitive receptor to be a person in the population who is particularly susceptible to health effects due to exposure to an air contaminant. Sensitive receptors are identified as facilities that house or attract children, the elderly, people with illnesses or others who are especially sensitive to the effects of air pollutants. Hospitals, schools, convalescent facilities, and residential areas are examples of sensitive receptors.

The City currently has numerous sensitive land uses, in particular residences, schools, health care facilities, and playgrounds. These sensitive land uses will continue to exist and new sensitive land uses will be established pursuant to General Plan policies. The Project site is within the Transect Zoning District (TSC) and is predominantly surrounded by commercial uses with multi-family residential uses located to adjacent to the north along El Camino Real, the Deluxe Inn Motel to the south and the residential uses along 1st Street, A Street, and Antionette Lane (refer to Figure 2: Sensitive Receptor Map).

SOURCE: Google Earth - 2024

FIGURE 2

Construction

Emissions are estimated using the latest CalEEMod software, which is a statewide land use emissions computer model designed to provide a uniform platform for government agencies, land use planners, and environmental professionals to quantity potential criteria pollutant and GHG emissions from a variety of land use projects. Detailed construction equipment lists, construction scheduling, and emissions calculations are provided in **Appendix A**.

Construction of the Project has the potential to generate temporary criteria pollutant emissions through the use of heavy-duty construction equipment and through vehicle trips generated from workers and haul trucks traveling to and from the Project site. Mobile-source emissions, primarily NOx, would result from the use of construction equipment. Construction emissions can vary substantially from day to day, depending on the level of activity, the specific type of construction activity, and prevailing weather conditions. The assessment of construction air quality impacts considers each of these potential sources.

Daily regional emissions during construction are forecasted by assuming a conservative estimate of construction activities (i.e., all construction occurs at the earliest feasible date) and applying the mobile source and fugitive dust emissions factors. The input values used in this analysis were adjusted to be project-specific for the equipment and construction schedule. The CalEEMod program uses the CARB onroad vehicle emissions model (EMFAC2021) to calculate the emission rates specific for the County for construction-related employee vehicle trips and the CARB off-road emissions model (OFFROAD2011) to calculate emission rates for heavy truck operations. Emission rates are reported by the program in grams per trip and grams per mile or grams per running hour. Daily truck trips and CalEEMod default trip length data were used to assess roadway emissions from truck exhaust. The maximum daily emissions are estimated values for the worst-case day and do not represent the emissions that would occur for every day of project construction. The maximum daily emissions are compared to the SDAPCD screening numeric indicators.

Fugitive dust emissions vary greatly during construction and are dependent on the amount and type of activity, silt content of the soil, and the weather. Vehicles moving over paved and unpaved surfaces, demolition, excavation, earth movement, grading, and wind erosion from exposed surfaces can all be sources of fugitive dust. The Project would be required to comply with BAAQMD Regulation 6, which sets standards and requirements for controlling and mitigating fugitive dust emissions at dust generating facilities.

Operation

The operations-related criteria air quality impacts created by the proposed project have been analyzed through the use of the CalEEMod model. The operating emissions were based on the year 2026, which is the first year following construction when the project is fully operational. The operations emissions

printouts from the CalEEMod model are provided in **Appendix A**. The CalEEMod analyzes operational emissions from area sources, energy usage, and mobile sources, which are discussed below.

Mobile

Operation of the Project has the potential to generate criteria pollutant emissions through vehicle trips traveling to and from the Project site. The weekday daily trips of 2,652 (without incorporation of 50 percent pass-by reduction) forecasted in the Memorandum of Understanding⁴ were based on surveys at local In-N-Out Burger restaurants. The Saturday and Sunday trip rates were assumed to be the weekday rate adjusted by multiplying the ratio of the CalEEMod default rates for those days. In calculating mobile-source emissions, trip-length values were based on the distances provided in CalEEMod.

Area

In addition, emissions would result from area sources on site, such as natural gas combustion, landscaping equipment, and use of consumer products. Area-source emissions are based on natural gas (building heating and water heaters), landscaping equipment, and consumer product (including paint) usage rates provided in CalEEMod. As specifics were not known about the landscaping equipment fleet, CalEEMod defaults were used to estimate emissions from landscaping equipment. Natural gas usage factors in CalEEMod are based on the California Energy Commission's California Commercial End Use Survey data set, which provides energy demand by building type and climate zone. No other changes were made to the default area source parameters.

Energy

Energy usage includes emissions from the generation of electricity and natural gas used on-site. No changes were made to the default energy usage parameters.

Ganddini, Transportation Study Scoping Agreement for In-N-Out Burger (972 El Camino Real) Project, dated February 26, 2024

BAAQMD AIR QUALITY SIGNIFICANCE THRESHOLDS

Significance Criteria

The determination of a project's significance on air quality shall be made considering the factors provided in the BAAQMD CEQA Thresholds and Guidelines Update. The City has not adopted specific Citywide significance thresholds for air quality impacts; rather, the thresholds and methodologies contained in the BAAQMD 2022 CEQA Guidelines for both construction and operational emissions are utilized for evaluating projects in the City. These thresholds are described below.

Construction Emission Thresholds

The Project will have a significant impact if it exceeds the construction thresholds listed in Table 4: Construction Thresholds.

TABLE 4: CONSTRUCTION THRESHOLDS				
Pollutant	Construction Emissions ¹ (pounds/day)			
Reactive Organic Gas (ROG)	54			
Nitrogen oxide (NOx)	54			
Respirable particulate matter (PM10 exhaust)	82			
Fine particulate matter (PM2.5 exhaust)	54			
PM10/PM2.5 (fugitive dust)	Best Management Practices ²			

Source: BAAQMD 2022 CEQA Guidelines, Table 3-1 Air Quality Thresholds of Significance (Project Level).

¹ The Air District recommends for construction projects that require less than 1 year to complete, lead agencies should annualize impacts over the scope of actual days that peak impacts would occur rather than over the full year. Additionally, for phased projects that results in concurrent construction and operational emissions.

² PM10/PM2.5 (fugitive dust) is also recognized to impact local communities. The Air District strongly recommends implementing all feasible fugitive dust management practices especially when construction projects are located near sensitive communities, including schools, residential areas, or other sensitive land uses. These measures are detailed in Chapter 5, Section 5.2.2 Construction-Related Criteria Air Pollutant Emissions.

Based on the BAAQMD CEQA Guidelines, thresholds for each criteria pollutant for the operations of the Project are provided in **Table 5: Operational Thresholds**.

TABLE 5: OPERATIONAL THRESHOLDS						
	Operational					
Pollutant	Average Daily Emissions (lb/day)	Maximum Annual Emissions (tpy)				
Reactive Organic Gas (ROG)	54	10				
Nitrogen oxide (NOx)	54	10				
Respirable particulate matter (PM10)	82	15				
Fine particulate matter (PM2.5)	54	10				

Source: BAAQMD 2022 CEQA Guidelines, Table 3-1 Air Quality Thresholds of Significance (Project Level).

Carbon Monoxide Hotspot

The main air quality concern associated with drive-through facilities is the potential to create carbon monoxide (CO) hotspots where a large number of vehicles idle. The screening criteria for CO hotspots indicate that a project would have a less than significant impact if (1) it is consistent with the Congestion Management Program (CMP); (2) the Project would not increase traffic volumes at any intersection to greater than 44,000 vehicles per hour; and (3) the Project would not increase traffic volumes at any intersection to greater than 24,000 vehicles per hour where atmospheric mixing is limited (e.g., tunnel, parking garage, bridge underpass, natural or urban street canyon, below-grade roadway).

Cumulative Threshold

BAAQMD recommends that a project be considered to result in a cumulatively considerable impact to air quality if any construction-related emissions and operational emissions from individual development projects exceed the mass daily emissions thresholds for individual projects. The BAAQMD neither recommends quantified analyses of the emissions generated by a set of cumulative development projects nor provides thresholds of significance to be used to assess the impacts associated with these emissions. A project is also considered to result in a cumulatively considerable contribution to significant impacts if the population and employment projections for the project exceed the rate of growth defined in BAAQMD's AQMP.

Emissions of air pollutants were estimated for construction and operation of the Project. In California, the California Air Pollution Control Officer's Association recommends the use CalEEMod to calculate and organize emissions data for new development projects. CalEEMod is a program that relies on project-specific information pertaining to geographic setting, utility service provision, construction scheduling and equipment inventory, and operational design features to generate estimates of air pollutant and GHG emissions.

Table 6: Project Construction Schedule provides the dates and durations of each of the activities that will take place during construction, as well as a brief description of the scope of work. Future dates represent approximations based on the general Project timeline and are subject to change pending unpredictable circumstances that may arise. It is important to note project delays that affect the corresponding time period in which construction activities would occur compared to the analysis time period would result in lower emissions due to newer equipment, regulatory requirements, and greater engine efficiencies. Therefore, the reported construction emissions are overstated compared to the emissions associated with a delayed construction schedule.

TABLE 6: PROJECT CONSTRUCTION SCHEDULE					
Construction Activity	Approximate Start Date	Approximate End Date	Duration (Days)	Description	
Demolition	8/1/2025	9/11/2025	30	Demolition of existing 3,000 square foot single story retail building	
Grading	9/12/2025	10/23/2025	30	Export of approximately 1,600 cubic yards	
Building Construction	10/24/2025	3/12/2026	100	Construction of Proposed Project	
Paving	3/13/2026	3/19/2026	5	Paving of asphalt surfaces	
Architectural Coating	3/20/2026	3/26/2026	5	Application of architectural coatings to building materials	

Note: Refer to Appendix A: CalEEMod Air Quality Emission Output Files.

Construction

An assessment of air pollutant emissions was prepared utilizing the construction schedule in **Table 6**. **Table 7: Project Construction Diesel Equipment Inventory** displays the construction equipment required for each activity described in **Table 7**. Under regulatory compliance measures in CalEEMod, it was assumed that all construction activities would adhere to BAAQMD Regulation 6 (Particulate Matter) and Regulation 7 (Odorous Substances).

TABLE 7: PROJECT CONSTRUCTION DIESEL EQUIPMENT INVENTORY				
Phase	Off-Road Equipment Type	Amount	Daily Hours	Horsepower [HP] (Load Factor)
	Concrete/Industrial Saws	1	8	33 (0.73)
Demolition	Rubber Tired Dozers	1	1	367 (0.40)
	Tractors/Loaders/Backhoes	2	6	84 (0.37)
	Graders	1	6	148 (0.41)
Grading	Rubber Tired Dozers	1	6	367 (0.40)
	Tractors/Loaders/Backhoes	1	7	84 (0.37)
Duilding Construction	Forklifts	2	6	82 (0.20)
Building Construction -	Tractors/Loaders/Backhoes	2	8	84 (0.37)
	Cement and Mortar Mixers	4	6	10 (0.56)
Daving	Pavers	1	7	81 (0.42)
Paving -	Rollers	1	7	36 (0.38)
_	Tractors/Loaders/Backhoes	1	7	84 (0.37)
Architectural Coating	Air Compressors	1	6	37 (0.48)
—				

Refer to Appendix A.2: CalEEMod Air Quality Emission Output Files (Proposed).

Maximum daily emissions of air pollutants during construction of the Project were calculated using CalEEMod. **Table 8: Maximum Construction Emissions** identifies daily emissions that are estimated for peak construction days for each construction year. Based on the modeling, construction of the Project would not exceed daily regional concentration thresholds. It is important to note, BAAQMD recommends for construction projects that require less than 1 year to complete to annualize impacts over the scope of actual days that peak impacts would occur rather than over the full year. As shown below, annualized emissions would also not exceed annual regional concentration thresholds. As such, construction of the Project would not generate any significant environmental impacts associated with air quality compliance.

TABLE 8: MAXIMUM CONSTRUCTION EMISSIONS				
	ROG	NOx	PM10 exhaust	PM2.5 exhaust
Source			pounds/day	
2025	1.1	10.9	0.5	0.4
2026	9.5	4.3	0.2	0.2
Maximum	9.5	10.9	0.5	0.4
BAAQMD Mass Daily Threshold	54	54	82	54
Threshold exceeded?	No	No	No	No
			tons/year	
2025	<0.1	0.3	<0.1	<0.1
2026	<0.1	0.1	<0.1	<0.1
Maximum	<0.1	0.3	<0.1	<0.1
BAAQMD Mass Daily Threshold	10	10	15	10
Threshold exceeded?	No	No	No	No

Notes: Totals in table may not appear to add exactly due to rounding in the computer model calculations. Refer to Appendix A.2: CalEEMod Air Quality Emission Output Files (Proposed).

Operation

Operational emissions would result primarily from passenger vehicles traveling to and from the Project site. As mentioned previously, the vehicle trips associated with the proposed project have been analyzed by inputting the project-generated trips from the *Transportation Impact Analysis* (dated February 26, 2024). The results presented in **Table 9: Maximum Operational Emissions** are compared to the BAAQMD-established operational significance thresholds. As shown in **Table 9**, the operational emissions would not exceed the regional concentration thresholds. Additionally, the operational emissions provided below would be further reduced when taking into account trip reductions from these public transit options located within the Project vicinity and removal of the existing use. As such, operation of the Project would not generate any significant environmental impacts associated with air quality compliance.

TABLE 9: MAXI	MUM OPERATI	ONAL EMISSIO	NS	
	ROG	NOx	PM10	PM2.5
Source		pounds/	day	
Mobile	9.2	7.8	24.6	6.3
Area	0.1		<0.1	<0.1
Energy	<0.1	0.1	<0.1	<0.1
Total	9.3	7.9	24.6	6.3
BAAQMD Mass Daily Threshold	54	54	82	54
Threshold exceeded?	No	No	No	No
		tons/ye	ar	
Mobile	1.2	0.7	1.9	0.5
Area	<0.1	<0.1	<0.1	<0.1
Energy	<0.1	<0.1	<0.1	<0.1
Total	1.2	0.7	1.9	0.5
BAAQMD Mass Daily Threshold	10	10	15	10
Threshold exceeded?	No	No	No	No

Notes: Totals in table may not appear to add exactly due to rounding in the computer model calculations. Refer to Appendix A.2: CalEEMod Air Quality Emission Output Files (Proposed).

Carbon Monoxide (CO) Hotspot

The main air quality concern associated with drive-through facilities is the potential to create carbon monoxide (CO) hotspots where a large number of vehicles idle. No exceedances of CO have been recorded at monitoring stations in the Air Basin for some time, and the Air Basin is currently designated as a CO attainment area for both CAAQS and NAAQS. Thus, it is not reasonable to expect that CO levels at Project-impacted intersections would rise to the level of an exceedance of these standards.

Furthermore, the screening criteria for CO hotspots indicate that a project would have a less than significant impact if (1) it is consistent with the Congestion Management Program (CMP); (2) the Project would not increase traffic volumes at any intersection to greater than 44,000 vehicles per hour; and (3) the Project would not increase traffic volumes at any intersection to greater than 24,000 vehicles per hour where atmospheric mixing is limited (e.g., tunnel, parking garage, bridge underpass, natural or urban street canyon, below-grade roadway). According to the MOU, the proposed project would result in 2,652 daily trips (276 mid-day peak hour trips and 200 PM peak hour trips). It is important to note, totals do not include a pass-by reduction of 50 percent during the mid-day and PM periods. As such the Project would not increase traffic volumes at any intersection greater than 44,000 vehicles per hour, and 24,000 vehicles per hour where atmospheric mixing is limited. The proposed Project would not produce the volume of traffic required to generate a CO hotspot in the context of the screening criteria above.

Toxic Air Contaminants

Project construction would result in short-term emissions of diesel particulate matter, which is a TAC. Off-road heavy-duty diesel equipment would emit diesel particulate matter over the course of the construction period. As mentioned previously, commercial and residential uses are located adjacent to

the site. Localized diesel particulate emissions (strongly correlated with PM2.5 emissions) would be minimal and would be substantially below regional thresholds, as shown in **Table 9**. Project compliance with the CARB anti-idling measure, which limits idling to no more than 5 minutes at any location for diesel-fueled commercial vehicles, would further minimize diesel particulate matter emissions in the Project area.

Project operations would generate only minor amounts of diesel emissions from delivery trucks and incidental maintenance activities. Trucks would comply with the applicable provisions of the CARB Truck and Bus regulation to minimize and reduce emission from existing diesel trucks. In addition, Project operations would only result in minimal emissions of air toxics from maintenance or other ongoing activities, such as from the use of architectural coatings or household cleaning products. As a result, toxic or carcinogenic air pollutants are not expected to occur in any meaningful amounts in conjunction with operation of the proposed uses within the Project site. Based on the uses expected on the Project site, potential long-term operational impacts associated with the release of TACs would be minimal and would not be expected to exceed the BAAQMD thresholds of significance.

Odors

Restaurants, especially fast food restaurants, can generate substantial sources of odors as a result of cooking processes and waste disposal. Char broilers, deep-fryers, and ovens tend to produce food odors that can be considered offensive to some people. The food waste produced by restaurants can putrefy if not properly managed, which can also produce objectionable odors. Odor impacts can be minimized, contained, or prevented by implementing technologies and design measures at the source, or through planning-based measures. These technologies include:

- Integrate grease filtration system or grease removal system;
- Baffle filters;
- Electrostatic precipitator;
- Water cooling/cleaning unit;
- Disposable pleated or bag filters;
- Activated carbon filters;
- Oxidizing pellet beds;
- Incineration;
- Catalytic conversion;
- Proper packaging and frequency of food waste disposal; and
- Exhaust stack and vent location with respect to receptors.

BAAQMD's thresholds for odors are qualitative. BAAQMD does not consider odors generated from use of construction equipment and activities to be objectionable. For operational-phase odor impacts, a project that would result in the siting of a new source of odor or exposure of a new receptor to existing or

planned odor sources should consider odor impacts. BAAQMD considers potential odor impacts to be significant if there are five confirmed complaints per year from a facility, averaged over 3 years. BAAQMD has established odor screening thresholds for land uses that have the potential to generate substantial odor complaints, including wastewater treatment plants, landfills or transfer stations, composting facilities, confined animal facilities, food manufacturing, and chemical plants. The Project does not include any of the above-noted uses or processes, nor would it conflict with Air Quality Goal CNR-11, Policies 11.2 and 11.3, of the City's General Plan. No impacts would occur.

Cumulative Impacts

Development of the Project in conjunction with the related projects near the Project site would result in an increase in construction and operational emissions in an already urbanized area of the City. However, cumulative air quality impacts from construction, based on BAAQMD guidelines, are not analyzed in a manner similar to project-specific air quality impacts. Instead, BAAQMD recommends that a project's potential contribution to cumulative impacts should be assessed utilizing the same significance criteria as those for project-specific impacts. According to BAAQMD, individual development projects that generate construction or operational emissions that exceed BAAQMD recommended daily regional or localized thresholds for project-specific impacts, would also cause a cumulatively considerable increase in emissions for those pollutants for which the Basin is in nonattainment.

With the implementation of regulatory compliance measures such as Regulation 6 (Particulate Matter) and Regulation 7 (Odorous Substances), the Project's construction and operational emissions are not expected to significantly contribute to cumulative emissions for CO, NOx, PM10, and PM2.5. As such, the Project's contribution to cumulative air quality emissions in combination with the related projects would not be cumulatively considerable.

As discussed previously, the Project would not jeopardize the attainment of air quality standards in the AQMP for the Air Basin. As such, the Project would not have a cumulatively considerable contribution to a potential conflict with or obstruction of the implementation of the AQMP regional reduction plans.

The contents of this Air Quality Study represent an accurate depiction of the air quality environment and impacts associated with the proposed In-N-Out Burger Restaurant Project. The information contained in this study is based on the best available information at the time of preparation. If you have any questions, please contact me directly at (818) 415-7274.

Christ Kirikian

Principal | Director of Air Quality & Acoustics ckirikian@meridianconsultantsllc.com

20

APPENDIX A

CalEEMod Air Quality Emission Output Files

APPENDIX A.1

Existing

INOB_South San Francisco (Existing) Custom Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source

- 4.3.1. Unmitigated
- 4.4. Water Emissions by Land Use
 - 4.4.1. Unmitigated
- 4.5. Waste Emissions by Land Use
 - 4.5.1. Unmitigated
- 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
- 4.7. Offroad Emissions By Equipment Type
 - 4.7.1. Unmitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated

- 5. Activity Data
 - 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
 - 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.2. Architectural Coatings
 - 5.10.3. Landscape Equipment
 - 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
 - 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated
 - 5.13. Operational Waste Generation
 - 5.13.1. Unmitigated
 - 5.14. Operational Refrigeration and Air Conditioning Equipment
 - 5.14.1. Unmitigated
 - 5.15. Operational Off-Road Equipment

- 5.15.1. Unmitigated
- 5.16. Stationary Sources
 - 5.16.1. Emergency Generators and Fire Pumps
 - 5.16.2. Process Boilers
- 5.17. User Defined
- 5.18. Vegetation
 - 5.18.1. Land Use Change
 - 5.18.1.1. Unmitigated
 - 5.18.1. Biomass Cover Type
 - 5.18.1.1. Unmitigated
 - 5.18.2. Sequestration
 - 5.18.2.1. Unmitigated
- 8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	INOB_South San Francisco (Existing)
Operational Year	2024
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	4.60
Precipitation (days)	43.0
Location	972 El Camino Real, South San Francisco, CA 94080, USA
County	San Mateo
City	South San Francisco
Air District	Bay Area AQMD
Air Basin	San Francisco Bay Area
TAZ	1292
EDFZ	1
Electric Utility	Pacific Gas & Electric Company
Gas Utility	Pacific Gas & Electric
App Version	2022.1.1.22

1.2. Land Use Types

Land Use Subty	e Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq	Special Landscape	Population	Description
					ft)	Area (sq ft)		

Fast Food Restaurant with Drive Thru	3.00	1000sqft	0.07	3,000	9,517	_	_	_
Parking Lot	41.0	Space	0.37	0.00	0.00	_	_	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.4. Operations Emissions Compared Against Thresholds

Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	6.15	5.70	4.49	52.0	0.14	0.09	12.9	13.0	0.08	3.27	3.36	20.4	14,487	14,508	2.59	0.48	57.5	14,772
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Unmit.	6.05	5.58	5.28	50.6	0.13	0.09	12.9	13.0	0.08	3.27	3.36	20.4	13,845	13,865	2.65	0.53	6.06	14,095
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	4.13	3.92	2.64	25.7	0.06	0.05	5.35	5.40	0.04	1.36	1.40	20.4	6,152	6,173	2.41	0.27	14.4	6,327
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.75	0.72	0.48	4.69	0.01	0.01	0.98	0.99	0.01	0.25	0.26	3.37	1,019	1,022	0.40	0.04	2.38	1,047
Exceeds (Daily Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

Threshol d	_	54.0	54.0	_	_	_	_	82.0	_	_	54.0	_	_	_	_	_	_	_
Unmit.	_	No	No	_	_	_	_	No	_	_	No	_	_	_	_	_	_	_
Exceeds (Average Daily)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Threshol d	_	54.0	54.0	_	_	_	_	82.0	_	_	54.0	_	_	_	_	_	_	_
Unmit.	_	No	No	_	_	_	_	No	_	_	No	_	_	_	_	_	_	_

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	6.12	5.59	4.38	51.8	0.14	0.08	12.9	13.0	0.08	3.27	3.35	_	14,270	14,270	0.52	0.47	52.8	14,476
Area	0.02	0.10	< 0.005	0.13	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.54	0.54	< 0.005	< 0.005	_	0.54
Energy	0.01	0.01	0.11	0.09	< 0.005	0.01	_	0.01	0.01	_	0.01	_	214	214	0.03	< 0.005	_	215
Water	_	_	_	_	_	_	_	_	_	_	_	1.74	3.51	5.26	0.18	< 0.005	_	11.0
Waste	_	_	_	_	_	_	_	_	_	_	_	18.6	0.00	18.6	1.86	0.00	_	65.2
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4.69	4.69
Total	6.15	5.70	4.49	52.0	0.14	0.09	12.9	13.0	0.08	3.27	3.36	20.4	14,487	14,508	2.59	0.48	57.5	14,772
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	6.04	5.50	5.17	50.5	0.13	0.08	12.9	13.0	0.08	3.27	3.35	_	13,628	13,628	0.58	0.52	1.37	13,799
Area	_	0.08	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Energy	0.01	0.01	0.11	0.09	< 0.005	0.01	_	0.01	0.01	_	0.01	_	214	214	0.03	< 0.005	_	215
Water	_	_	_	_	_	_	_	_	_	_	_	1.74	3.51	5.26	0.18	< 0.005	_	11.0

Waste	_	_	_	_	_	_	_	_	_	_	_	18.6	0.00	18.6	1.86	0.00	_	65.2
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4.69	4.69
Total	6.05	5.58	5.28	50.6	0.13	0.09	12.9	13.0	0.08	3.27	3.36	20.4	13,845	13,865	2.65	0.53	6.06	14,095
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	4.11	3.83	2.53	25.5	0.06	0.04	5.35	5.39	0.03	1.36	1.39	_	5,935	5,935	0.34	0.26	9.71	6,031
Area	0.01	0.09	< 0.005	0.06	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.26	0.26	< 0.005	< 0.005	_	0.27
Energy	0.01	0.01	0.11	0.09	< 0.005	0.01	_	0.01	0.01	_	0.01	_	214	214	0.03	< 0.005	_	215
Water	_	_	_	_	_	_	_	_	_	_	_	1.74	3.51	5.26	0.18	< 0.005	_	11.0
Waste	_	_	_	_	_	_	_	_	_	_	_	18.6	0.00	18.6	1.86	0.00	_	65.2
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4.69	4.69
Total	4.13	3.92	2.64	25.7	0.06	0.05	5.35	5.40	0.04	1.36	1.40	20.4	6,152	6,173	2.41	0.27	14.4	6,327
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	0.75	0.70	0.46	4.66	0.01	0.01	0.98	0.98	0.01	0.25	0.25	_	983	983	0.06	0.04	1.61	998
Area	< 0.005	0.02	< 0.005	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.04	0.04	< 0.005	< 0.005	_	0.04
Energy	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	35.4	35.4	< 0.005	< 0.005	_	35.6
Water	_	_	_	_	_	_	_	_	_	_	_	0.29	0.58	0.87	0.03	< 0.005	_	1.83
Waste	_	_	_	_	_	_	_	_	_	_	_	3.08	0.00	3.08	0.31	0.00	_	10.8
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.78	0.78
Total	0.75	0.72	0.48	4.69	0.01	0.01	0.98	0.99	0.01	0.25	0.26	3.37	1,019	1,022	0.40	0.04	2.38	1,047

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
Fast Food Restaurar with Drive Thru		5.59	4.38	51.8	0.14	0.08	12.9	13.0	0.08	3.27	3.35	_	14,270	14,270	0.52	0.47	52.8	14,476
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	6.12	5.59	4.38	51.8	0.14	0.08	12.9	13.0	0.08	3.27	3.35	_	14,270	14,270	0.52	0.47	52.8	14,476
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_
Fast Food Restaurar with Drive Thru		5.50	5.17	50.5	0.13	0.08	12.9	13.0	0.08	3.27	3.35	_	13,628	13,628	0.58	0.52	1.37	13,799
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	6.04	5.50	5.17	50.5	0.13	0.08	12.9	13.0	0.08	3.27	3.35	_	13,628	13,628	0.58	0.52	1.37	13,799
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		0.70	0.46	4.66	0.01	0.01	0.98	0.98	0.01	0.25	0.25	_	983	983	0.06	0.04	1.61	998
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.75	0.70	0.46	4.66	0.01	0.01	0.98	0.98	0.01	0.25	0.25	_	983	983	0.06	0.04	1.61	998

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	_	_	-	_	_	_	_	-	-	_	-	-	-	_	_	-
Fast Food Restaurar with Drive Thru		_	_	_	_	_	_	_	_	_	_	_	76.1	76.1	0.01	< 0.005	_	76.8
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	7.87	7.87	< 0.005	< 0.005	_	7.95
Total	_	_	_	_	_	_	_	_	_	_	_	_	83.9	83.9	0.01	< 0.005	_	84.8
Daily, Winter (Max)	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		_	_	_	_	_	_	_	_	_	_	_	76.1	76.1	0.01	< 0.005	_	76.8
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	7.87	7.87	< 0.005	< 0.005	_	7.95
Total	_	_	_	_	_	_	_	_	_	_	_	_	83.9	83.9	0.01	< 0.005	_	84.8
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		_		_	_	_	_	_	_	_	_	_	12.6	12.6	< 0.005	< 0.005	_	12.7

Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	1.30	1.30	< 0.005	< 0.005	_	1.32
Total	_	_	_	_	_	_	_	_	_	_	_	_	13.9	13.9	< 0.005	< 0.005	_	14.0

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	-	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		0.01	0.11	0.09	< 0.005	0.01	_	0.01	0.01	_	0.01	_	130	130	0.01	< 0.005	_	130
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.01	0.01	0.11	0.09	< 0.005	0.01	_	0.01	0.01	_	0.01	_	130	130	0.01	< 0.005	_	130
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		0.01	0.11	0.09	< 0.005	0.01	_	0.01	0.01	_	0.01	_	130	130	0.01	< 0.005	_	130
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.01	0.01	0.11	0.09	< 0.005	0.01	_	0.01	0.01	_	0.01	_	130	130	0.01	< 0.005	_	130
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Fast Food Restaurar with Drive Thru		< 0.005	0.02	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	21.5	21.5	< 0.005	< 0.005	_	21.5
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	21.5	21.5	< 0.005	< 0.005	_	21.5

4.3. Area Emissions by Source

4.3.1. Unmitigated

Source	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	0.07	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	_	0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	0.02	0.02	< 0.005	0.13	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.54	0.54	< 0.005	< 0.005	_	0.54
Total	0.02	0.10	< 0.005	0.13	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.54	0.54	< 0.005	< 0.005	_	0.54
Daily, Winter (Max)	_	_	_	_		_	_		_	_	_			_		_	_	_
Consum er Products	_	0.07	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Architect Coatings		0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	0.08	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	_	0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings		< 0.005	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	< 0.005	< 0.005	< 0.005	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.04	0.04	< 0.005	< 0.005	_	0.04
Total	< 0.005	0.02	< 0.005	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.04	0.04	< 0.005	< 0.005	_	0.04

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		_	_	_	_	_	_	_	_	_	_	1.74	3.51	5.26	0.18	< 0.005	_	11.0
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	1.74	3.51	5.26	0.18	< 0.005	_	11.0

Daily, Winter	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
(Max)																		
Fast Food Restaurar with Drive Thru		_	_	_	_	_	_	_	_	_	_	1.74	3.51	5.26	0.18	< 0.005	_	11.0
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	1.74	3.51	5.26	0.18	< 0.005	_	11.0
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		_	_	_	_	_	_	_	_	_	_	0.29	0.58	0.87	0.03	< 0.005	_	1.83
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	0.29	0.58	0.87	0.03	< 0.005	_	1.83

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		_	_	_	_	_	_	_	_	_	_	18.6	0.00	18.6	1.86	0.00	_	65.2

Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	18.6	0.00	18.6	1.86	0.00	_	65.2
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		_	_	_	_	_	_	_	_	_	_	18.6	0.00	18.6	1.86	0.00	_	65.2
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	-	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	18.6	0.00	18.6	1.86	0.00	_	65.2
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		_	_	_	_	_	_	_	_	_	_	3.08	0.00	3.08	0.31	0.00	_	10.8
Parking Lot	_	_	_	_	_	_	-	_	_	_	_	0.00	0.00	0.00	0.00	0.00	-	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	3.08	0.00	3.08	0.31	0.00	_	10.8

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Fast	_	_	_			<u> </u>	_	_	_	_	_	_	<u> </u>	_	-	_	4.69	4.69
Food Restauran with Drive																		
Thru																		
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4.69	4.69
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restauran with Drive Thru	 t	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4.69	4.69
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4.69	4.69
Annual	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.78	0.78
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.78	0.78

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

		10 (1107 0101)	,	<i>y</i> , <i>y</i> .		, , , , , , , , , , , , , , , , , , , ,					, ,							
Equipme nt	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Туре																		
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	TOG	ROG		СО		PM10E			PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Equipme nt Type	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Vegetatio n	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

		(<i>J</i> ,		adij dira												
Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	<u> </u>	_	<u> </u>	_	_	_	_	_	<u> </u>	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_		<u> </u>	_		_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Avoided	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sequest ered	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
				· ·				

Fast Food Restaurant with Drive Thru	1,402	1,834	1,407	534,517	4,465	18,377	14,096	2,857,319
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	4,500	1,500	964

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	180

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Fast Food Restaurant with Drive Thru	136,136	204	0.0330	0.0040	404,763
Parking Lot	14,081	204	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Fast Food Restaurant with Drive Thru	910,601	78,898
Parking Lot	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Fast Food Restaurant with Drive Thru	34.6	_
Parking Lot	0.00	_

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Fast Food Restaurant with Drive Thru	Household refrigerators and/or freezers	R-134a	1,430	0.00	0.60	0.00	1.00
Fast Food Restaurant with Drive Thru	Other commercial A/C and heat pumps	R-410A	2,088	1.80	4.00	4.00	18.0
Fast Food Restaurant with Drive Thru	Walk-in refrigerators and freezers	R-404A	3,922	< 0.005	7.50	7.50	20.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type Fuel Type Engine Tier Number per Day Hours Per Day Horsepower Load Factor

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type Fuel Type Number per Day Hours per Day Hours per Year Horsepower Load Factor

5.16.2. Process Boilers

Equipment Type Fuel Type Number Boiler Rating (MMBtu/hr) Daily Heat Input (MMBtu/day) Annual Heat Input (MMBtu/yr)

5.17. User Defined

Equipment Type Fuel Type

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type Vegetation Soil Type Initial Acres Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Final Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
nee type	Mulliber	Lieutiony Daved (Kvvii/year)	Ivalulai Gas Gaved (blu/yeai)

8. User Changes to Default Data

Screen	Justification
Operations: Vehicle Data	According to MOU dated February 26, 2024, existing restaurant generates 1,402 daily weekday trips

APPENDIX A.2

Proposed

INOB_South San Francisco Custom Report

Table of Contents

- 1. Basic Project Information
 - 1.1. Basic Project Information
 - 1.2. Land Use Types
 - 1.3. User-Selected Emission Reduction Measures by Emissions Sector
- 2. Emissions Summary
 - 2.1. Construction Emissions Compared Against Thresholds
 - 2.2. Construction Emissions by Year, Unmitigated
 - 2.4. Operations Emissions Compared Against Thresholds
 - 2.5. Operations Emissions by Sector, Unmitigated
- 3. Construction Emissions Details
 - 3.1. Demolition (2025) Unmitigated
 - 3.3. Grading (2025) Unmitigated
 - 3.5. Building Construction (2025) Unmitigated
 - 3.7. Building Construction (2026) Unmitigated

- 3.9. Paving (2026) Unmitigated
- 3.11. Architectural Coating (2026) Unmitigated
- 4. Operations Emissions Details
 - 4.1. Mobile Emissions by Land Use
 - 4.1.1. Unmitigated
 - 4.2. Energy
 - 4.2.1. Electricity Emissions By Land Use Unmitigated
 - 4.2.3. Natural Gas Emissions By Land Use Unmitigated
 - 4.3. Area Emissions by Source
 - 4.3.1. Unmitigated
 - 4.4. Water Emissions by Land Use
 - 4.4.1. Unmitigated
 - 4.5. Waste Emissions by Land Use
 - 4.5.1. Unmitigated
 - 4.6. Refrigerant Emissions by Land Use
 - 4.6.1. Unmitigated
 - 4.7. Offroad Emissions By Equipment Type

- 4.7.1. Unmitigated
- 4.8. Stationary Emissions By Equipment Type
 - 4.8.1. Unmitigated
- 4.9. User Defined Emissions By Equipment Type
 - 4.9.1. Unmitigated
- 4.10. Soil Carbon Accumulation By Vegetation Type
 - 4.10.1. Soil Carbon Accumulation By Vegetation Type Unmitigated
 - 4.10.2. Above and Belowground Carbon Accumulation by Land Use Type Unmitigated
 - 4.10.3. Avoided and Sequestered Emissions by Species Unmitigated
- 5. Activity Data
 - 5.1. Construction Schedule
 - 5.2. Off-Road Equipment
 - 5.2.1. Unmitigated
 - 5.3. Construction Vehicles
 - 5.3.1. Unmitigated
 - 5.4. Vehicles
 - 5.4.1. Construction Vehicle Control Strategies

- 5.5. Architectural Coatings
- 5.6. Dust Mitigation
 - 5.6.1. Construction Earthmoving Activities
 - 5.6.2. Construction Earthmoving Control Strategies
- 5.7. Construction Paving
- 5.8. Construction Electricity Consumption and Emissions Factors
- 5.9. Operational Mobile Sources
 - 5.9.1. Unmitigated
- 5.10. Operational Area Sources
 - 5.10.1. Hearths
 - 5.10.1.1. Unmitigated
 - 5.10.2. Architectural Coatings
 - 5.10.3. Landscape Equipment
- 5.11. Operational Energy Consumption
 - 5.11.1. Unmitigated
- 5.12. Operational Water and Wastewater Consumption
 - 5.12.1. Unmitigated

5.13. Operational Waste Generation

5.13.1. Unmitigated

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

5.16.2. Process Boilers

5.17. User Defined

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

5.18.2. Sequestration

5.18.2.1. Unmitigated

8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	INOB_South San Francisco
Construction Start Date	8/1/2025
Operational Year	2027
Lead Agency	_
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	4.60
Precipitation (days)	43.0
Location	972 El Camino Real, South San Francisco, CA 94080, USA
County	San Mateo
City	South San Francisco
Air District	Bay Area AQMD
Air Basin	San Francisco Bay Area
TAZ	1292
EDFZ	1
Electric Utility	Pacific Gas & Electric Company
Gas Utility	Pacific Gas & Electric
App Version	2022.1.1.25

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq	Special Landscape	Population	Description
					ft)	Area (sq ft)		

Fast Food Restaurant with Drive Thru	3.89	1000sqft	0.09	3,887	0.00	_	_	_
Parking Lot	56.0	Space	0.50	0.00	19,338	_	_	_

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_		_		_	_	_	_	_	_	_	_	_	_
Unmit.	1.41	1.12	10.9	10.8	0.02	0.47	1.57	2.04	0.43	0.72	1.15	_	2,306	2,306	0.15	0.10	1.26	2,340
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	9.48	9.45	10.9	10.8	0.02	0.47	1.57	2.04	0.43	0.72	1.15	_	2,302	2,302	0.15	0.10	0.03	2,336
Average Daily (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.22	0.18	1.72	2.12	< 0.005	0.07	0.15	0.22	0.07	0.06	0.13	_	387	387	0.02	0.01	0.07	391
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	0.04	0.03	0.31	0.39	< 0.005	0.01	0.03	0.04	0.01	0.01	0.02	_	64.1	64.1	< 0.005	< 0.005	0.01	64.8
Exceeds (Daily Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Threshol d	_	54.0	54.0	_	_	82.0	_	_	54.0	_	_	_	_	_	_	_	_	_
Unmit.	_	No	No	_	_	No	_	_	No	_	_	_	_	_	_	_	_	_
Exceeds (Average Daily)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_
Threshol d	_	54.0	54.0	_	_	82.0	_	_	54.0	_	_	_	_	_	_	_	_	_
Unmit.	_	No	No	_	_	No	_	_	No	_	_	_	_	_	_	_	_	_

2.2. Construction Emissions by Year, Unmitigated

Year	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2025	1.41	1.12	10.9	10.8	0.02	0.47	1.57	2.04	0.43	0.72	1.15	_	2,306	2,306	0.15	0.10	1.26	2,340
Daily - Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2025	1.41	1.12	10.9	10.8	0.02	0.47	1.57	2.04	0.43	0.72	1.15	_	2,302	2,302	0.15	0.10	0.03	2,336
2026	9.48	9.45	4.28	5.80	0.01	0.18	0.16	0.34	0.16	0.04	0.20	_	969	969	0.04	0.01	0.01	974
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2025	0.22	0.18	1.72	2.12	< 0.005	0.07	0.15	0.22	0.07	0.06	0.13	_	387	387	0.02	0.01	0.07	391
2026	0.19	0.18	0.50	0.85	< 0.005	0.02	< 0.005	0.02	0.02	< 0.005	0.02	_	132	132	0.01	< 0.005	0.01	132
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2025	0.04	0.03	0.31	0.39	< 0.005	0.01	0.03	0.04	0.01	0.01	0.02	_	64.1	64.1	< 0.005	< 0.005	0.01	64.8
2026	0.04	0.03	0.09	0.15	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	21.8	21.8	< 0.005	< 0.005	< 0.005	21.9

2.4. Operations Emissions Compared Against Thresholds

Un/Mit.	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	10.2	9.32	6.74	85.9	0.25	0.14	24.5	24.6	0.13	6.20	6.33	26.4	25,965	25,992	3.53	0.82	75.2	26,399
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Unmit.	10.0	9.15	7.93	83.0	0.24	0.14	24.5	24.6	0.13	6.20	6.33	26.4	24,833	24,860	3.61	0.90	7.87	25,226
Average Daily (Max)	_	_	_	_		_	_	_		_	_	_	_	_	_	_	_	_
Unmit.	6.88	6.42	4.01	42.1	0.11	0.07	10.1	10.2	0.07	2.57	2.64	26.4	10,972	10,998	3.23	0.45	18.8	11,233
Annual (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Unmit.	1.26	1.17	0.73	7.69	0.02	0.01	1.85	1.86	0.01	0.47	0.48	4.37	1,817	1,821	0.53	0.08	3.11	1,860
Exceeds (Daily Max)	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_
Threshol d	_	54.0	54.0	_	_	_	_	82.0	_	_	54.0	_	_	_	_	_	_	_
Unmit.	_	No	No	_	_	_	Yes	No	_	_	No	_	_	_	_	_	_	_
Exceeds (Average Daily)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Threshol d	_	54.0	54.0	_	_	_	_	82.0	_	_	54.0	_	_	_	_	_	_	_
Unmit.	_	No	No	_	_	_	Yes	No	_	_	No	_	_	_	_	_	_	_

2.5. Operations Emissions by Sector, Unmitigated

Sector	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	10.0	9.19	6.60	85.6	0.25	0.13	24.5	24.6	0.12	6.20	6.32	_	25,682	25,682	0.85	0.81	69.2	26,014
Area	0.13	0.13	< 0.005	0.17	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.70	0.70	< 0.005	< 0.005	_	0.70
Energy	0.02	0.01	0.14	0.12	< 0.005	0.01	_	0.01	0.01	_	0.01	_	277	277	0.03	< 0.005	_	279
Water	_	_	_	_	_	_	_	_	_	_	_	2.26	4.71	6.97	0.23	0.01	_	14.5
Waste	_	_	_	_	_	_	_	_	_	_	_	24.1	0.00	24.1	2.41	0.00	_	84.4
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.08	6.08
Total	10.2	9.32	6.74	85.9	0.25	0.14	24.5	24.6	0.13	6.20	6.33	26.4	25,965	25,992	3.53	0.82	75.2	26,399
Daily, Winter (Max)	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	9.93	9.04	7.79	82.9	0.24	0.13	24.5	24.6	0.12	6.20	6.32	_	24,551	24,551	0.94	0.89	1.79	24,843
Area	0.10	0.10	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Energy	0.02	0.01	0.14	0.12	< 0.005	0.01	_	0.01	0.01	_	0.01	_	277	277	0.03	< 0.005	_	279
Water	_	_	_	_	_	_	_	_	_	_	_	2.26	4.71	6.97	0.23	0.01	_	14.5
Waste	_	_	_	_	_	_	_	_	_	_	_	24.1	0.00	24.1	2.41	0.00	_	84.4
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.08	6.08
Total	10.0	9.15	7.93	83.0	0.24	0.14	24.5	24.6	0.13	6.20	6.33	26.4	24,833	24,860	3.61	0.90	7.87	25,226
Average Daily	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	6.75	6.30	3.87	41.9	0.11	0.06	10.1	10.2	0.06	2.57	2.62	-	10,690	10,690	0.55	0.45	12.7	10,849
Area	0.11	0.11	< 0.005	0.08	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.34	0.34	< 0.005	< 0.005	_	0.34
Energy	0.02	0.01	0.14	0.12	< 0.005	0.01	_	0.01	0.01	_	0.01	_	277	277	0.03	< 0.005	_	279
Water	_	_	_	_	_	_	_	_	_	_	_	2.26	4.71	6.97	0.23	0.01	_	14.5

Waste	_	_	_	_	_	_	_	_	_	_	_	24.1	0.00	24.1	2.41	0.00	_	84.4
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.08	6.08
Total	6.88	6.42	4.01	42.1	0.11	0.07	10.1	10.2	0.07	2.57	2.64	26.4	10,972	10,998	3.23	0.45	18.8	11,233
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mobile	1.23	1.15	0.71	7.65	0.02	0.01	1.85	1.86	0.01	0.47	0.48	_	1,770	1,770	0.09	0.07	2.11	1,796
Area	0.02	0.02	< 0.005	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.06	0.06	< 0.005	< 0.005	_	0.06
Energy	< 0.005	< 0.005	0.03	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	45.9	45.9	0.01	< 0.005	_	46.2
Water	_	_	_	_	_	_	_	_	_	_	_	0.37	0.78	1.15	0.04	< 0.005	_	2.39
Waste	_	_	_	_	_	_	_	_	_	_	_	4.00	0.00	4.00	0.40	0.00	_	14.0
Refrig.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	1.01	1.01
Total	1.26	1.17	0.73	7.69	0.02	0.01	1.85	1.86	0.01	0.47	0.48	4.37	1,817	1,821	0.53	0.08	3.11	1,860

3. Construction Emissions Details

3.1. Demolition (2025) - Unmitigated

						<u> </u>		D/uay ioi										
Location	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.47	4.33	5.65	0.01	0.16	_	0.16	0.14	_	0.14	_	852	852	0.03	0.01	_	855
Demolitio n	_	_	_	_	_	_	0.07	0.07	_	0.01	0.01	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Average Daily	_		_	_	_	_		_				_	_	_	_	_	_	
Off-Road Equipmen		0.04	0.36	0.46	< 0.005	0.01	_	0.01	0.01	_	0.01	_	70.0	70.0	< 0.005	< 0.005	_	70.3
Demolitio n	_	_	_	_	_	_	0.01	0.01	_	< 0.005	< 0.005	_	_	_	-	_	_	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.06	0.08	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	11.6	11.6	< 0.005	< 0.005	_	11.6
Demolitio n	_	_	_	_	_	_	< 0.005	< 0.005	_	< 0.005	< 0.005	_	_	_	_	_	_	-
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.03	0.02	0.02	0.34	0.00	0.00	0.09	0.09	0.00	0.02	0.02	_	90.1	90.1	< 0.005	< 0.005	0.30	90.6
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.02	< 0.005	0.14	0.10	< 0.005	< 0.005	0.02	0.02	< 0.005	0.01	0.01	_	91.7	91.7	0.01	0.01	0.18	96.7
Daily, Winter (Max)	_	_	_	_	_	_	-	_	-	_	-	_	-	_	_	_	_	_
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	7.02	7.02	< 0.005	< 0.005	0.01	7.12
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	7.54	7.54	< 0.005	< 0.005	0.01	7.93
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.16	1.16	< 0.005	< 0.005	< 0.005	1.18

Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	1.25	1.25	< 0.005	< 0.005	< 0.005	1.31

3.3. Grading (2025) - Unmitigated

	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T		PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		1.09	10.1	10.0	0.02	0.46	_	0.46	0.43	_	0.43	_	1,714	1,714	0.07	0.01	_	1,720
Dust From Material Movemen	<u> </u>	_	_	_	_	_	1.38	1.38	_	0.67	0.67	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		1.09	10.1	10.0	0.02	0.46	_	0.46	0.43	_	0.43	_	1,714	1,714	0.07	0.01	_	1,720
Dust From Material Movemen	<u> </u>	_	_	_	-	_	1.38	1.38	_	0.67	0.67	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.09	0.83	0.83	< 0.005	0.04	_	0.04	0.04	_	0.04	_	141	141	0.01	< 0.005	_	141

Dust From Material Movemen		_	_	_	_	_	0.11	0.11	_	0.05	0.05	_		_			_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.02	0.15	0.15	< 0.005	0.01	_	0.01	0.01	_	0.01	_	23.3	23.3	< 0.005	< 0.005	_	23.4
Dust From Material Movemen	<u>—</u>	_	_	_	_	_	0.02	0.02	_	0.01	0.01	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.02	0.02	0.01	0.25	0.00	0.00	0.07	0.07	0.00	0.02	0.02	_	67.6	67.6	< 0.005	< 0.005	0.22	68.0
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.09	0.01	0.81	0.55	0.01	0.01	0.12	0.13	0.01	0.03	0.04	_	524	524	0.08	0.08	1.04	552
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	0.02	0.02	0.02	0.23	0.00	0.00	0.07	0.07	0.00	0.02	0.02	_	63.8	63.8	< 0.005	< 0.005	0.01	64.6
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.09	0.01	0.85	0.55	0.01	0.01	0.12	0.13	0.01	0.03	0.04	_	524	524	0.08	0.08	0.03	551
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	5.26	5.26	< 0.005	< 0.005	0.01	5.34
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.01	< 0.005	0.07	0.05	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	_	43.1	43.1	0.01	0.01	0.04	45.3

Annual	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.87	0.87	< 0.005	< 0.005	< 0.005	0.88
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	7.13	7.13	< 0.005	< 0.005	0.01	7.51

3.5. Building Construction (2025) - Unmitigated

Location	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.33	3.31	5.38	0.01	0.14	_	0.14	0.13	_	0.13	_	810	810	0.03	0.01	_	812
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.04	0.45	0.73	< 0.005	0.02	_	0.02	0.02	_	0.02	_	109	109	< 0.005	< 0.005	_	110
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.08	0.13	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	18.1	18.1	< 0.005	< 0.005	_	18.2
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	13.9	13.9	< 0.005	< 0.005	< 0.005	14.1
Vendor	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	16.0	16.0	< 0.005	< 0.005	< 0.005	16.7
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.88	1.88	< 0.005	< 0.005	< 0.005	1.91
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.16	2.16	< 0.005	< 0.005	< 0.005	2.26
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.31	0.31	< 0.005	< 0.005	< 0.005	0.32
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.36	0.36	< 0.005	< 0.005	< 0.005	0.37
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Building Construction (2026) - Unmitigated

Location	TOG	ROG		СО	SO2	PM10E		PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	<u> </u>	<u> </u>	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.31	3.08	5.37	0.01	0.12	_	0.12	0.11	_	0.11	_	809	809	0.03	0.01	_	812

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.04	0.43	0.75	< 0.005	0.02	_	0.02	0.02	_	0.02	-	112	112	< 0.005	< 0.005	_	113
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.08	0.14	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	18.6	18.6	< 0.005	< 0.005	_	18.7
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	-	_	_	_	_	_	_	-	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.05	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	_	13.6	13.6	< 0.005	< 0.005	< 0.005	13.8
Vendor	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	15.7	15.7	< 0.005	< 0.005	< 0.005	16.4
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	-	-	-	_	_	-	_	-	_	_	_	-
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	1.90	1.90	< 0.005	< 0.005	< 0.005	1.92
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	2.18	2.18	< 0.005	< 0.005	< 0.005	2.29
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.31	0.31	< 0.005	< 0.005	< 0.005	0.32
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	0.36	0.36	< 0.005	< 0.005	< 0.005	0.38
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.9. Paving (2026) - Unmitigated

Location	TOG	ROG	NOx	со	r for ann	PM10E	PM10D	PM10T			PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	-	_	_	_	_	-	-	-	_	_	_	-	-	-	_	-	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.49	4.24	5.30	0.01	0.18	_	0.18	0.16	_	0.16	_	823	823	0.03	0.01	_	826
Paving	0.26	0.26	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.01	0.06	0.07	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	11.3	11.3	< 0.005	< 0.005	_	11.3
Paving	< 0.005	< 0.005	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	0.01	0.01	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	1.87	1.87	< 0.005	< 0.005	_	1.87
Paving	< 0.005	< 0.005	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	_		_	_	_	_	_		_	_	_	_	_	_	_	_	_	_
Worker	0.05	0.04	0.04	0.50	0.00	0.00	0.16	0.16	0.00	0.04	0.04	_	146	146	< 0.005	0.01	0.01	148
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.01	2.01	< 0.005	< 0.005	< 0.005	2.03
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.33	0.33	< 0.005	< 0.005	< 0.005	0.34
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

3.11. Architectural Coating (2026) - Unmitigated

	TOG	ROG	NOx	СО		PM10E			PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		0.12	0.86	1.13	< 0.005	0.02	_	0.02	0.02	_	0.02	_	134	134	0.01	< 0.005	_	134
Architect ural Coatings	9.33	9.33	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-
Off-Road Equipmen		< 0.005	0.01	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	-	1.83	1.83	< 0.005	< 0.005	_	1.84
Architect ural Coatings	0.13	0.13	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Off-Road Equipmen		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	_	< 0.005	< 0.005	-	< 0.005	-	0.30	0.30	< 0.005	< 0.005	_	0.30
Architect ural Coatings	0.02	0.02	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Summer (Max)	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Worker	< 0.005	< 0.005	< 0.005	0.01	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	2.72	2.72	< 0.005	< 0.005	< 0.005	2.76
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	_	_	_	_	_	_	_	_	-	-	_	-	_	-	_	_	_	-
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.04	0.04	< 0.005	< 0.005	< 0.005	0.04
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	_
Worker	< 0.005	< 0.005	< 0.005	< 0.005	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	_	0.01	0.01	< 0.005	< 0.005	< 0.005	0.01
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		9.19	6.60	85.6	0.25	0.13	24.5	24.6	0.12	6.20	6.32	_	25,682	25,682	0.85	0.81	69.2	26,014
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	10.0	9.19	6.60	85.6	0.25	0.13	24.5	24.6	0.12	6.20	6.32	_	25,682	25,682	0.85	0.81	69.2	26,014
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		9.04	7.79	82.9	0.24	0.13	24.5	24.6	0.12	6.20	6.32	_	24,551	24,551	0.94	0.89	1.79	24,843

Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	9.93	9.04	7.79	82.9	0.24	0.13	24.5	24.6	0.12	6.20	6.32	_	24,551	24,551	0.94	0.89	1.79	24,843
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		1.15	0.71	7.65	0.02	0.01	1.85	1.86	0.01	0.47	0.48	_	1,770	1,770	0.09	0.07	2.11	1,796
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00
Total	1.23	1.15	0.71	7.65	0.02	0.01	1.85	1.86	0.01	0.47	0.48	_	1,770	1,770	0.09	0.07	2.11	1,796

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		_	_	_	_	_	_	_	_	_	_	_	98.6	98.6	0.02	< 0.005	_	99.6
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	10.7	10.7	< 0.005	< 0.005	_	10.9
Total	_	_	_	_	_	_	<u> </u>	_	_	_	_	_	109	109	0.02	< 0.005	_	110
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Fast Food Restaurar with Drive Thru	-	_	_	_	_	_	_	_	_	_	_	_	98.6	98.6	0.02	< 0.005	_	99.6
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	10.7	10.7	< 0.005	< 0.005	_	10.9
Total	_	_	_	_	_	_	_	_	_	_	_	_	109	109	0.02	< 0.005	_	110
Annual	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_
Fast Food Restaurar with Drive Thru	 t	_	_	_		_	_	_	_	_	_	_	16.3	16.3	< 0.005	< 0.005	_	16.5
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	_	1.78	1.78	< 0.005	< 0.005	_	1.80
Total	_	_	_	_	_	_	_	_	_	_	_	_	18.1	18.1	< 0.005	< 0.005	_	18.3

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		0.01	0.14	0.12	< 0.005	0.01	_	0.01	0.01	_	0.01		168	168	0.01	< 0.005	_	169
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.02	0.01	0.14	0.12	< 0.005	0.01	_	0.01	0.01	_	0.01	_	168	168	0.01	< 0.005	_	169

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		0.01	0.14	0.12	< 0.005	0.01	_	0.01	0.01	_	0.01		168	168	0.01	< 0.005	_	169
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	0.02	0.01	0.14	0.12	< 0.005	0.01	_	0.01	0.01	_	0.01	_	168	168	0.01	< 0.005	_	169
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		< 0.005	0.03	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	27.8	27.8	< 0.005	< 0.005	_	27.9
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	_	0.00	_	0.00	0.00	0.00	0.00	_	0.00
Total	< 0.005	< 0.005	0.03	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	27.8	27.8	< 0.005	< 0.005	_	27.9

4.3. Area Emissions by Source

4.3.1. Unmitigated

			,	<i>y</i> ,		, ,		, ,										
Source	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products		0.08	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Architect ural Coatings	0.01	0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	0.03	0.03	< 0.005	0.17	< 0.005	< 0.005	_	< 0.005	< 0.005		< 0.005	_	0.70	0.70	< 0.005	< 0.005	_	0.70
Total	0.13	0.13	< 0.005	0.17	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.70	0.70	< 0.005	< 0.005	_	0.70
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	0.08	0.08	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	0.01	0.01	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	0.10	0.10	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Consum er Products	0.02	0.02	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Architect ural Coatings	< 0.005	< 0.005	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Landsca pe Equipme nt	< 0.005	< 0.005	< 0.005	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.06	0.06	< 0.005	< 0.005	_	0.06
Total	0.02	0.02	< 0.005	0.02	< 0.005	< 0.005	_	< 0.005	< 0.005	_	< 0.005	_	0.06	0.06	< 0.005	< 0.005	_	0.06

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T				BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Use																		
Daily, Summer (Max)	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		_	_	_	_	_	_	_	_	_	_	2.26	4.27	6.53	0.23	0.01	_	14.0
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.44	0.44	< 0.005	< 0.005	_	0.45
Total	_	_	_	_	_	_	_	_	_	_	_	2.26	4.71	6.97	0.23	0.01	_	14.5
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		_	_	_	-	_	-	_	_	_	-	2.26	4.27	6.53	0.23	0.01	_	14.0
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.44	0.44	< 0.005	< 0.005	_	0.45
Total	_	_	_	_	_	_	_	_	_	_	_	2.26	4.71	6.97	0.23	0.01	_	14.5
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		_	_	_	_	_	_	_	_	_	_	0.37	0.71	1.08	0.04	< 0.005	_	2.32
Parking Lot		_	_	_	_	_	_	_	_	_	_	0.00	0.07	0.07	< 0.005	< 0.005	_	0.07
Total	_	_	<u> </u>	_	_	_	_	_	_	_	_	0.37	0.78	1.15	0.04	< 0.005	_	2.39

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Ciliena	Pollulan	ts (lb/day	y for dall	y, ton/yr	ior annu	iai) and i	GHGS (I	o/day ior	dally, iv	i i /yr ioi	annuai)							
Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	СО2Т	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		_	_	_	_	_	_	_	_	_	_	24.1	0.00	24.1	2.41	0.00	_	84.4
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	24.1	0.00	24.1	2.41	0.00	_	84.4
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restauran with Drive Thru		_	_		_	_		_	_	_		24.1	0.00	24.1	2.41	0.00	_	84.4
Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	24.1	0.00	24.1	2.41	0.00	_	84.4
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		_	_		_	_	_	_	_	_	_	4.00	0.00	4.00	0.40	0.00	_	14.0

Parking Lot	_	_	_	_	_	_	_	_	_	_	_	0.00	0.00	0.00	0.00	0.00	_	0.00
Total	_	_	_	_	_	_	_	_	_	_	_	4.00	0.00	4.00	0.40	0.00	_	14.0

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Land Use	TOG	ROG	NOx	СО	SO2	PM10E			PM2.5E			BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	-	_	-	_	_	_	_	_	_	_	_	_	_	-	_
Fast Food Restaurar with Drive Thru		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.08	6.08
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.08	6.08
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.08	6.08
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	6.08	6.08
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Fast Food Restaurar with Drive Thru		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.01	1.01

Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.01	1.01
iotai																	1.01	

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type	TOG		NOx							PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Equipme nt Type	TOG	ROG		со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipme nt Type		ROG				PM10E				PM2.5D		BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

١	√egetatio	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
r	า																		

Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_		_	_		_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Ontona	Tonatan	10 (107 00)		i e	1													
Land Use	TOG	ROG	NOx	со	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Daily, Winter (Max)	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Annual	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Total	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Species TOG ROG NOX CO SO2 PM10E PM10D PM10T PM2.5E PM2.5D PM2.5T BCO2 NBCO2 CO2T CH4 N																			
TSDECIES FING TRUG TINOX TOO TSOZ TRIVITUE TRIVITUD TRIVITUT TRIVIZOE TRIVIZOO TRIVIZO TRIVIZO TINOCOZ TOOZI TOA4 TIN	Species	TOG	ROG	NOx	СО	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e

Daily, Summer (Max) —	
Subtotal —<	
Sequest ered — <t< td=""><td>- -</td></t<>	- -
ered Subtotal — <td< td=""><td> </td></td<>	
Remove — — — — — — — — — — — — — — — — — — —	- -
	- -
d a land	
Subtotal — — — — — — — — — — — — — — — — — — —	- -
	- -
Daily, — — — — — — — — — — — — — — — — — — —	- -
Avoided — — — — — — — — — — — — — — — — — —	_ _
Subtotal — — — — — — — — — — — — — — — — — — —	- -
Sequest — — — — — — — — — — — — — — — — — — —	- -
Subtotal — — — — — — — — — — — — — — — — — — —	
Remove — — — — — — — — — — — — — — — — — — —	- -
Subtotal — — — — — — — — — — — — — — — — — — —	- -
	_ _
Annual — — — — — — — — — — — — — — — — — — —	
Avoided — — — — — — — — — — — — — — — — — —	- -
Subtotal — — — — — — — — — — — — — — — — — — —	
Sequest — — — — — — — — — — — — — — — — — — —	- -
Subtotal — — — — — — — — — — — — — — — — — — —	

Remove d	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Subtotal	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
Demolition	Demolition	8/1/2025	9/11/2025	5.00	30.0	_
Grading	Grading	9/12/2025	10/23/2025	5.00	30.0	_
Building Construction	Building Construction	10/24/2025	3/12/2026	5.00	100	_
Paving	Paving	3/13/2026	3/19/2026	5.00	5.00	_
Architectural Coating	Architectural Coating	3/20/2026	3/26/2026	5.00	5.00	_

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Demolition	Tractors/Loaders/Backh oes	Diesel	Average	2.00	6.00	84.0	0.37
Demolition	Rubber Tired Dozers	Diesel	Average	1.00	1.00	367	0.40
Demolition	Concrete/Industrial Saws	Diesel	Average	1.00	8.00	33.0	0.73
Grading	Graders	Diesel	Average	1.00	6.00	148	0.41
Grading	Rubber Tired Dozers	Diesel	Average	1.00	6.00	367	0.40
Grading	Tractors/Loaders/Backh oes	Diesel	Average	1.00	7.00	84.0	0.37

Building Construction	Forklifts	Diesel	Average	2.00	6.00	82.0	0.20
Building Construction	Tractors/Loaders/Backh oes	Diesel	Average	2.00	8.00	84.0	0.37
Paving	Tractors/Loaders/Backh oes	Diesel	Average	1.00	7.00	84.0	0.37
Paving	Cement and Mortar Mixers	Diesel	Average	4.00	6.00	10.0	0.56
Paving	Pavers	Diesel	Average	1.00	7.00	81.0	0.42
Paving	Rollers	Diesel	Average	1.00	7.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Average	1.00	6.00	37.0	0.48

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Demolition	_	_	_	_
Demolition	Worker	10.0	12.8	LDA,LDT1,LDT2
Demolition	Vendor	_	7.30	HHDT,MHDT
Demolition	Hauling	1.17	20.0	HHDT
Demolition	Onsite truck	_	_	HHDT
Grading	_	_	_	_
Grading	Worker	7.50	12.8	LDA,LDT1,LDT2
Grading	Vendor	_	7.30	HHDT,MHDT
Grading	Hauling	6.67	20.0	HHDT
Grading	Onsite truck	_	_	HHDT
Building Construction	_	_	_	_
Building Construction	Worker	1.63	12.8	LDA,LDT1,LDT2
Building Construction	Vendor	0.64	7.30	HHDT,MHDT

Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	_	_	HHDT
Paving	_	_	_	_
Paving	Worker	17.5	12.8	LDA,LDT1,LDT2
Paving	Vendor	_	7.30	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	_	_	HHDT
Architectural Coating	_	_	_	_
Architectural Coating	Worker	0.33	12.8	LDA,LDT1,LDT2
Architectural Coating	Vendor	_	7.30	HHDT,MHDT
Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	_	_	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Control Strategies Applied	PM10 Reduction	PM2.5 Reduction
Water unpaved roads twice daily	55%	55%
Limit vehicle speeds on unpaved roads to 25 mph	44%	44%
Sweep paved roads once per month	9%	9%

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	5,831	1,944	1,317

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (Cubic Yards)	Material Exported (Cubic Yards)		Material Demolished (Building Square Footage)	Acres Paved (acres)
Demolition	0.00	0.00	0.00	3,000	_
Grading	_	1,600	22.5	0.00	_
Paving	0.00	0.00	0.00	0.00	0.50

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	3	74%	74%
Water Demolished Area	2	36%	36%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
Fast Food Restaurant with Drive Thru	0.00	0%
Parking Lot	0.50	100%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2025	0.00	204	0.03	< 0.005
2026	0.00	204	0.03	< 0.005

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Fast Food Restaurant with Drive Thru	2,652	3,469	2,661	1,011,084	8,446	34,762	26,664	5,404,857
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	5,831	1,944	1,317

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	180

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBTU/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBTU/yr)
Fast Food Restaurant with Drive Thru	176,387	204	0.0330	0.0040	524,438

Darking Lot	10 222	204	0.0330	0.0040	0.00
Parking Lot	19,232	204		0.0010	0.00
S					

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
Fast Food Restaurant with Drive Thru	1,179,836	0.00
Parking Lot	0.00	160,316

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Fast Food Restaurant with Drive Thru	44.8	_
Parking Lot	0.00	_

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Fast Food Restaurant with Drive Thru	Household refrigerators and/or freezers	R-134a	1,430	0.00	0.60	0.00	1.00
Fast Food Restaurant with Drive Thru	Other commercial A/C and heat pumps	R-410A	2,088	1.80	4.00	4.00	18.0
Fast Food Restaurant with Drive Thru	Walk-in refrigerators and freezers	R-404A	3,922	< 0.005	7.50	7.50	20.0

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type Fuel Type Engine Tier Number per Day Hours Per Day Horsepower Load Factor

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

		land the second		and the second s		
Equipment Type	Fuel Type	l Number per Dav	l Hours per Dav	Hours per Year	Horsepower	Load Factor
Equipment type	TI UCI TYPE	Triumber per Day	Thours per Day	Thous per real	THOISEPOWEI -	Luau racioi

5.16.2. Process Boilers

Equipment Type Fuel Type Number Boiler Rating (MMBtu/hr) Daily Heat Input (MMBtu/day) Annual Heat Input (MMBtu/yr)

5.17. User Defined

Equipment Type Fuel Type

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type Vegetation Soil Type Initial Acres Final Acres

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type Final Acres Final Acres

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
nee type	ramber	Licentery Cavea (KWIII)	Matarar Gas Gavea (StaryCar)

8. User Changes to Default Data

Screen	Justification
Construction: Construction Phases	Anticipated construction schedule
Construction: Off-Road Equipment	No cranes
Operations: Vehicle Data	According to MOU dated February 26, 2024, project expected to generate 2,652 daily trips