

180 El Camino Real Residences

South San Francisco, California

ALUC ENVIRONMENTAL NOISE ANALYSIS

28 February 2022

Prepared for: Bridget Metz
Steelwave
101 California Street, Suite 800
San Francisco, CA 94111
bmetz@steelwavellc.com

Prepared by: **Salter**
Skyler Carrico – Consultant
Valerie Smith, PE – Vice President
scarrico@salter-inc.com
vsmith@salter-inc.com

Salter Project: 22-0062

San Francisco | San Jose | Los Angeles | Honolulu | Seattle
salter-inc.com

Acoustics
Audiovisual
Telecommunications
Security

1.0 INTRODUCTION

We have conducted an Airport Land-Use Commission (ALUC) environmental noise analysis for the proposed multi-family housing project at 180 El Camino Real in South San Francisco.

This report is broken into the following sections:

- Section 1.0 – Introduction
- Section 2.0 – Acoustical Criteria
- Section 3.0 – Noise Environment
- Section 4.0 – Recommendations
- Appendix A – Fundamentals of Environmental Acoustics
- Appendix B – SFO ALUCP 2020 Contours, with Project Site Indicated
- Appendix C – 2019 SFO Noise Contour Map, with Project Site Indicated
- Appendix D – 2021 3rd Quarter Noise Contour Overlay, December 2019 Airport Director's Report, with Project Site and Nearby Monitors Indicated

Those readers not familiar with the fundamental concepts of environmental noise may refer to Appendix A and **Figure A1** for additional information.

1.1 Executive Summary

The proposed project at 180 El Camino Real will consist of four buildings (three Research & Development buildings and one multi-family residential building). The site is located along South Spruce Avenue, between El Camino Real and Huntington Avenue. This ALUC study only addresses the residential building. In summary:

- The project site is located near the CNEL¹ 65 to 70 dB contours for airport noise for the three available site noise contour maps (See **Section 3.2** and **Appendices B, C, and D** for further information).
- Per the South San Francisco Noise Element, the ALUC uses the “latest quarterly noise contour report to determine the compatibility of land use plans”. This quarterly noise contour is shown in **Appendix D**. The 2021 3rd Quarter contours indicate the site is outside of the CNEL 65 dB contour for airport noise.

¹ CNEL (Community Noise Equivalent Level) – A descriptor for a 24-hour A-weighted average noise level. CNEL accounts for the increased acoustical sensitivity of people to noise during the evening and nighttime hours. CNEL penalizes sound levels by 5 dB during the hours from 7 PM to 10 PM and by 10 dB during the hours from 10 PM to 7 AM. For practical purposes, the CNEL and DNL are usually interchangeable.

- The project can achieve the State Building Code standard of CNEL 45 dB indoors with the use of commercially-available windows and conventional wood-frame construction.

2.0 ACOUSTICAL CRITERIA

2.1 State Noise Standards

The 2019 California Building Code requires that the indoor noise level in residential units of multi-family projects not exceed DNL² 45 dB.

2.2 City Noise Standards

The City also has the following related policies:

- Policy 9-I-1: Work to adopt a pass-by (single event) noise standard to supplement the current 65 dB CNEL average noise level standard as the basis for aircraft noise abatement programs.
- Policy 9-I-2: Work to adopt a lower average noise standard for aircraft-based mitigation and land use controls.
- Policy 9-I-4: Ensure that project applications for all new noise-sensitive land uses (plans and specifications), including hospitals and residential units proposed within the CNEL 60 dB to CNEL 69 dB aircraft noise contour include an acoustical study prepared by a professional acoustic engineer, that specifies the appropriate noise mitigation features to be included in the design and construction of these uses, to achieve an interior noise level of not more than CNEL 45 dB in any habitable room, based on the latest official SFIA noise contours³ and on-site noise measurement data.
- Policy 9-I-6: Require that applicants for new noise-sensitive development in areas subject to noise generators producing noise levels greater than 65 dB CNEL, obtain the services of a professional acoustical engineer to provide a technical analysis and design of mitigation measures.
- Policy 9-I-7: Where site conditions permit, require noise buffering for all noise-sensitive development subject to noise generators producing noise levels greater than 65 dB CNEL. This noise attenuation method should avoid the use of visible sound walls, where practical.
- Policy 9-I-10: Do not allow new residential or noise sensitive development in the CNEL 70 dB+ areas impacted by SFO operations, as required by Airport Land Use Commission infill criteria, with

2 DNL (Day-Night Average Sound Level) – A descriptor for a 24-hour A-weighted average noise level. DNL accounts for the increased acoustical sensitivity of people to noise during the nighttime hours. DNL penalizes sound levels by 10 dB during the hours from 10 PM to 7 AM. For practical purposes, the DNL and CNEL are usually interchangeable. DNL is sometimes written as Ldn.

3 We understand the latest noise contours are the 2021 3rd Quarter noise contours. See Appendix D.

the exception of projects deemed appropriate by the City Council and to the extent necessary, approved through the local agency override process.⁴

- Policy 9-I-11: Require new residential development in area between the most recent FAA-accepted 65 and 70 dB CNEL aircraft noise contours for San Francisco International Airport (SFO), or those projects deemed appropriate by the City Council and, to the extent necessary, approved through the local agency override process⁴, to grant an aviation easement to the City and County of San Francisco, as proprietor of SFO.

The City of South San Francisco's Noise Element notes that the San Mateo County ALUC will need to approve new development prior to permit issuance. The Noise Element identifies the following ALUC land-use compatibility guidelines for residential land use:

Table 1: Land Use Criteria for Noise-Impacted Areas

CNEL Range	General Land Use Criteria
Less than 65 dB	Satisfactory; no special insulation requirements
65 to 70 dB	Development requires analysis of noise reduction requirements and noise insulation as needed
Over 70 dB	Development should not be undertaken

To determine if a site is in an aircraft noise-impacted area, the ALUC determines the CNEL 65 dB boundary using the following resources:

- The federal CNEL 65 dB boundary is determined using the most recent noise exposure map (NEM) as accepted by the FAA under the Federal Aviation Regulation (FAR) Part 150 Noise Compatibility Program. At this time, the latest accepted NEM is the Final 2019 Noise Exposure Map⁵. This map is included in **Appendix C** with the project site indicated.
- The state CNEL 65 dB boundary is determined from the quarterly noise contours, based on the required airport noise monitoring system. **Appendix D** contains the 2021 3rd Quarter noise contour overlay, as well as the directors report with the approximate location of the project site indicated.

Per the Noise Element, the ALUC uses the latest quarterly noise contour to determine the compatibility of land use plans. **Appendix D** contains the 2021 3rd Quarter Noise Contour overlay.

4 Per the General Plan Amendment Resolution #20-870, which was passed on 1 December 2020. Amendment information provided by Genna Yarkin on 28 February 2022.

5 Per www.flfsfo.com, this NEM was submitted for approval in July 2018. The Final 2019 map is dated 13 August 2015.

2.3 SFO Comprehensive Airport Land Use Compatibility Plan

Table IV-I of the November 2012 *Comprehensive Airport Land Use Compatibility Plan for the Environs of San Francisco International Airport* contains the following policies and compatibility criteria for evaluating multi-family residential land uses.

- Policy NP-1 Noise Compatibility Zones: For the purposes of ALUC, the projected 2020 CNEL noise contour map from the Draft Environmental Assessment for the Proposed Runway Safety Area Program shall define the boundaries within which noise compatibility policies described in this Section shall apply.
- Policy NP-2 Airport Noise/Land Use Compatibility Criteria: The compatibility of proposed land uses located in the Airport noise compatibility zones shall be determined according to the noise/land use compatibility criteria shown in Table IV-1 [excepts shown below as **Table 2**]. The criteria indicate the maximum accepted airport noise levels, described in terms of CNEL, for the indicated land uses. The compatibility criteria indicate whether a proposed land use is “compatible”, “conditionally compatible”, or “not compatible” within each zone, designated by the identified CNEL ranges.

Table 2: ALUCP Noise/Land Use Compatibility Criteria

CNEL Range	Land Use
Less than 65 dB	Land use and related structures compatible without restrictions.
65 to 70 dB	Land use and related structures are permitted, provided that sound insulation is provided to reduce interior noise levels from exterior sources to CNEL 45 dB or lower and that an aviation easement is granted to the City and County of San Francisco as operator of SFO.
70 dB to 75 dB	Land use and related structures are not compatible. However, use is conditionally compatible only on an existing lot of record zoned only for residential use as of the effective date of the ALUCP. Use must be sound-insulated to achieve an indoor noise level of CNEL 45 dB or less from exterior sources.
Over 75 dB	Land use and related structures are not compatible

- Policy NP-4 Residential Uses Within CNEL 70 dB Contour: As described in Table IV-1, residential uses are not compatible in areas exposed to noise above CNEL 70 dB and typically should not be allowed in high noise areas.
 - Policy NP-4.1 Situations Where Residential Use is Conditionally Compatible: Residential uses are considered conditionally compatible in areas exposed to noise above CNEL 70 dB only if the proposed use is on a lot of record zoned exclusively for residential use as of the effective date of the ALUCP. In such a case, the residential use must be sound-insulated to achieve an indoor noise level of CNEL 45 dB or less from exterior sources. The property owner also shall grant an

avigation easement to the City and County of San Francisco in accordance with Policy NP-3 prior to issuance of a building permit for the proposed building or structure.

3.0 NOISE ENVIRONMENT

3.1 Project Description

The project site is located in South San Francisco, and is bounded by El Camino Real, Huntington Street, and South Spruce Avenue. It is also near San Francisco International Airport (SFO). The major noise source at the project site is traffic along these roads, and flyovers from SFO.

To quantify the existing noise environment, we conducted three long-term noise measurements between 19 and 21 January 2022 (see **Figure 1** for measurement locations and measured noise levels). The long-term noise monitors were installed at a height of approximately 12 feet above grade.

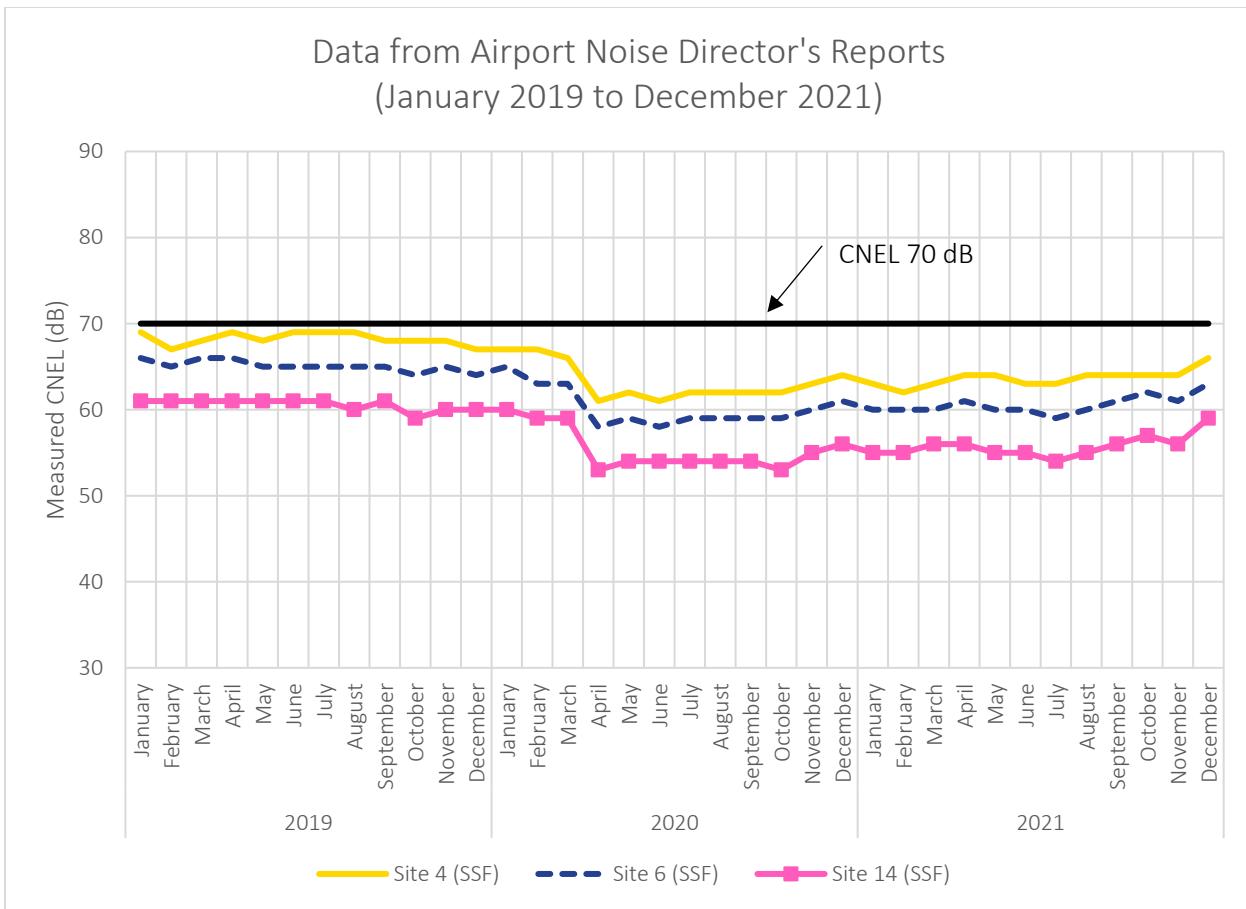
A future traffic analysis was not provided for this project. Therefore, we have added 1 dB to the calculated noise levels to account for general future traffic increases⁶.

3.2 Noise from SFO

Per the published resources, the site is exposed to the following noise levels from SFO airport:

- *November 2012 Comprehensive Airport Land Use Compatibility Plan*: Exhibit IV-6 shows the site within or directly on the CNEL 70 dB contour. This exhibit references noise contours provided in 2011. See **Appendix B** for the project site location.
- *Final 2019 Noise Exposure Map*: **Appendix C** contains the Part 150 map generated by the San Francisco International Airport. Per the exhibit, it was submitted on 13 August 2015. This exhibit references sources from 2014 for the creation of the noise contours.

Salter has added an overlay of the project site to the Part 150 map to clarify the project location. Per this map, the majority of the project site is located within the CNEL 65 to 70 dB contour.


- *December 2019 Airport Director's Report*⁷: See **Appendix D** for the approximate site location. Per this overlay⁸, the project site is fully beyond the CNEL 65 contour. This information is based on 2021 noise monitoring.

6 The California Department of Transportation assumes a traffic volume increase of three-percent per year, which corresponds to a 1 dB increase in DNL over a ten-year period.

7 Due to decreased noise levels from March 2020 onward due to the pandemic, we have used the December 2019 Airport Director's Report.

8 SFO 2021 3rd Quarter CNEL Overlay

GIS maps of historical quarterly noise reports are not available at this time. We have reviewed the noise levels provided in the monthly Airport Director's Reports dating back to January 2019. For the three noise monitors closest to the project site, noise levels are generally below CNEL 69 dB. The graph below shows the monthly measured noise levels since January 2019. Detailed information is provided in [Appendix D](#), along with information on the noise monitor locations.

3.3 Site Noise Context

The main noise sources at the project site include vehicle passbys on the nearby roadways and aircraft overflights from SFO. We conducted noise measurements at the project site (see [Figure 1](#)), which collected noise data from both the car passbys and the aircraft overflights. We measured on-site noise levels of CNEL 71 to 75 dB at roads surrounding the project site (see [Figure 1](#)).

Since both car and aircraft noise exist at the site, we have referenced the Airport Director's Report to determine the aircraft contribution to noise at the site. The Airport Director's Report summarizes the noise data from 29 noise monitors managed by the airport that continuously collect noise data. In general, these airport noise monitors are located away from major roadways, reducing the amount of

traffic noise that is collected (see data for aircraft noise presented in **Appendix D**), so that the airport contribution can be determined.

Using the 2019 December Airport Director's Report⁹, the contribution of airport noise at the site is expected to approximately CNEL 69 dB¹⁰. Logarithmically, subtracting the aircraft contribution from our noise measurements would result in a noise level of approximately CNEL 69 dB from traffic:

$$\text{CNEL } 75^a \text{ dB [from aircraft+traffic]} - \text{CNEL } 69^b \text{ dB [from aircraft]} = \text{CNEL } 74^c \text{ dB [from traffic]}$$

a = measured at project site, see Figure 1

b = determined from 2019 December Airport Director's Report

c = calculated

See **Appendix A** for additional information on decibel mathematics.

Individual aircraft flyovers from SFO are significantly louder than individual car passbys, but the flyovers occur at a lower frequency than the car passbys, resulting in similar average overall noise levels (CNEL).

For reference, CNEL above 70 dB are common along large roadways and rail lines. Figure 9-2 of the South San Francisco Noise Element indicates that noise levels in South San Francisco were estimated to be above CNEL 70 dB in 2006 in the vicinity of I-280, I-380, US 101, and along the Caltrain line. Recent noise measurements indicate that noise levels are above CNEL 70 dB along El Camino Real.

4.0 RECOMMENDATIONS

To meet the Code criterion of CNEL 45 dB inside residences, it will be necessary for the windows and exterior doors to have STC¹¹ ratings. Our calculations are based on preliminary drawings dated 6 January 2022 and the following assumptions and understandings of the current design:

- Living rooms are 12 by 15 feet
- Bedrooms are 10 by 12 feet
- Glazing is 50% of the facade
- Flooring is hard surfaced in all rooms, including bedrooms
- Residences have 9-foot-tall ceilings

9 Due to decreased noise levels from March 2020 onward due to the pandemic, we have used the December 2019 Airport Director's Report.

10 The project site is near Airport Noise Monitors 04, 06, and 14. We have referenced Monitor 04 for this CNEL level.

11 STC (Sound Transmission Class) – A single-number rating defined in ASTM E90 that quantifies the airborne sound insulating performance of a partition under laboratory conditions. Increasing STC ratings correspond to improved airborne sound insulation.

Based on the above, the following is a summary of our initial analysis:

- Rooms along Spruce: STC ratings up to 43
- Rooms along the east and west facades: STC ratings up to 38
- Rooms along the south facade: STC ratings up to 35

The recommended STC ratings are for full window assemblies (glass and frame) rather than just the glass itself. Tested sound-rated assemblies should be used. For reference, typical construction-grade assemblies achieve an STC rating of 28. Where STC ratings above 32 are required, at least one pane will need to be laminated. STC ratings above 38 typically require IGU greater than one-inch thick. This will vary depending on the window manufacturer.

Since the windows need to be closed to achieve an indoor DNL of 45 dB, an alternative method of supplying fresh air (e.g., mechanical ventilation) should be provided. This issue should be discussed with the project mechanical engineer.

SALTER © 2022
FOR ACOUSTICAL DESIGN INFORMATION ONLY

STEELWAVE (180 ECR) RESIDENTIAL
MEASUREMENT LOCATIONS AND MEASURED
NOISE LEVELS

FIGURE 1

Salter #
22-0009

VCS/EBM
01.26.22

APPENDIX A: FUNDAMENTAL CONCEPTS OF ENVIRONMENTAL NOISE

This section provides background information to aid in understanding the technical aspects of this report.

Three dimensions of environmental noise are important in determining subjective response. These are:

- The intensity or level of the sound
- The frequency spectrum of the sound
- The time-varying character of the sound

Airborne sound is a rapid fluctuation of air pressure above and below atmospheric pressure. Sound levels are usually measured and expressed in decibels (dB), with 0 dB corresponding roughly to the threshold of hearing.

The "frequency" of a sound refers to the number of complete pressure fluctuations per second in the sound. The unit of measurement is the cycle per second (cps) or hertz (Hz). Most of the sounds, which we hear in the environment, do not consist of a single frequency, but of a broad band of frequencies, differing in level. The name of the frequency and level content of a sound is its sound spectrum. A sound spectrum for engineering purposes is typically described in terms of octave bands, which separate the audible frequency range (for human beings, from about 20 to 20,000 Hz) into ten segments.

Many rating methods have been devised to permit comparisons of sounds having quite different spectra. Surprisingly, the simplest method correlates with human response practically as well as the more complex methods. This method consists of evaluating all of the frequencies of a sound in accordance with a weighting that progressively de-emphasizes the importance of frequency components below 1000 Hz and above 5000 Hz. This frequency weighting reflects the fact that human hearing is less sensitive at low frequencies and at extreme high frequencies relative to the mid-range.

The weighting system described above is called "A"-weighting, and the level so measured is called the "A-weighted sound level" or "A-weighted noise level." The unit of A-weighted sound level is sometimes abbreviated "dB." In practice, the sound level is conveniently measured using a sound level meter that includes an electrical filter corresponding to the A-weighting characteristic. All U.S. and international standard sound level meters include such a filter. Typical sound levels found in the environment and in industry are shown in **Figure A1**.

Although a single sound level value may adequately describe environmental noise at any instant in time, community noise levels vary continuously. Most environmental noise is a conglomeration of distant noise sources, which results in a relatively steady background noise having no identifiable source. These distant sources may include traffic, wind in trees, industrial activities, etc. and are relatively constant from moment to moment. As natural forces change or as human activity follows its daily cycle, the sound level may vary slowly from hour to hour. Superimposed on this slowly varying background is a succession of identifiable noisy events of brief duration. These may include nearby activities such as single vehicle passbys, aircraft flyovers, etc. which cause the environmental noise level to vary from instant to instant.

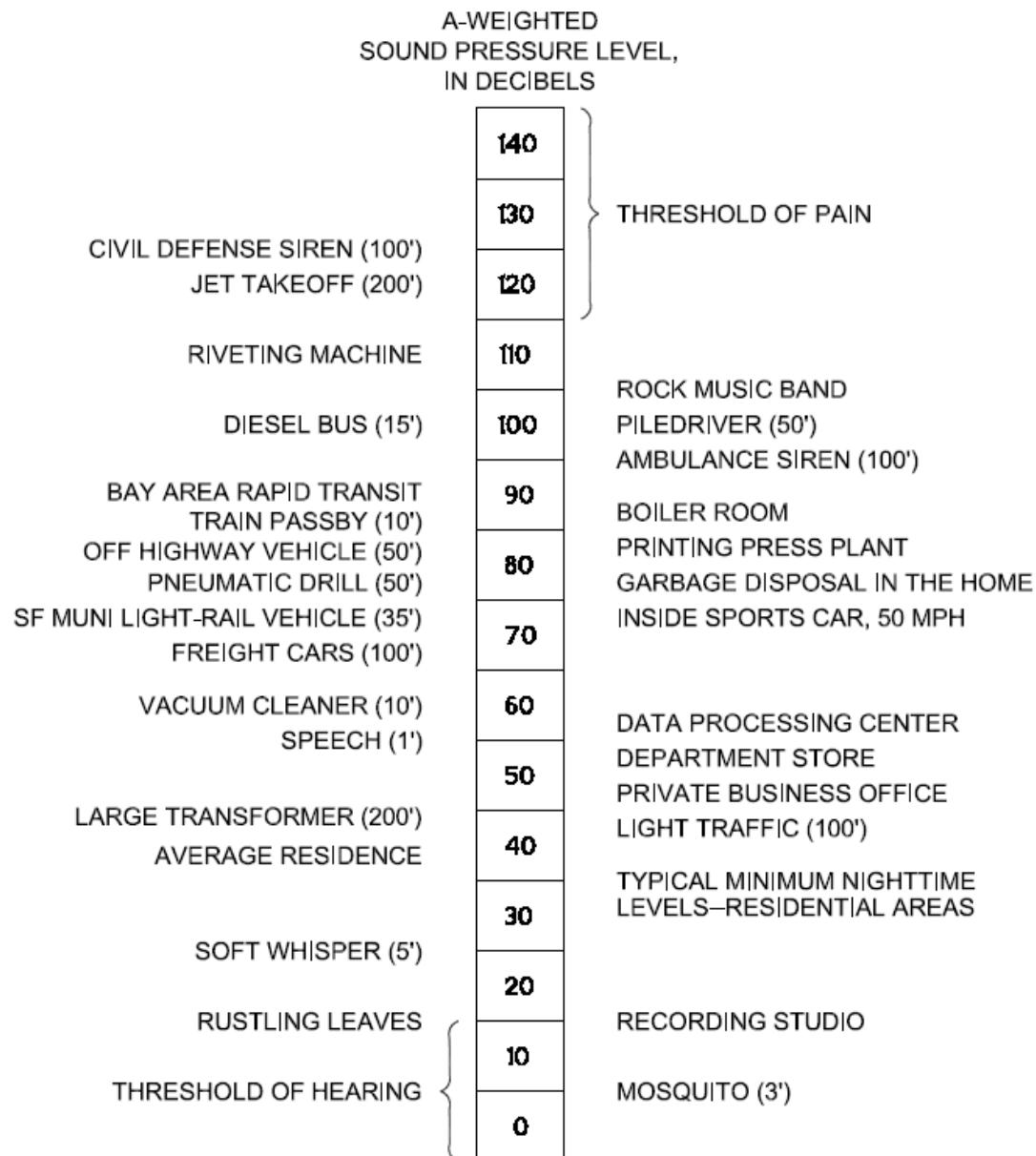
To describe the time-varying character of environmental noise, statistical noise descriptors were developed. "L10" is the A-weighted sound level equaled or exceeded during 10 percent of a stated time period. The L10 is considered a good measure of the maximum sound levels caused by discrete noise events. "L50" is the A-weighted sound level that is equaled or exceeded 50 percent of a stated time period; it represents the median sound level. The "L90" is the A-weighted sound level equaled or exceeded during 90 percent of a stated time period and is used to describe the background noise.

As it is often cumbersome to quantify the noise environment with a set of statistical descriptors, a single number called the average sound level or "L_{eq}" is now widely used. The term "L_{eq}" originated from the concept of a so-called equivalent sound level which contains the same acoustical energy as a varying sound level during the same time period. In simple but accurate technical language, the L_{eq} is the average A-weighted sound level in a stated time period. The L_{eq} is particularly useful in describing the subjective change in an environment where the source of noise remains the same but there is change in the level of activity. Widening roads and/or increasing traffic are examples of this kind of situation.

In determining the daily measure of environmental noise, it is important to account for the different response of people to daytime and nighttime noise. During the nighttime, exterior background noise levels are generally lower than in the daytime; however, most household noise also decreases at night, thus exterior noise intrusions again become noticeable. Further, most people trying to sleep at night are more sensitive to noise. To account for human sensitivity to nighttime noise levels, a special descriptor was developed. The descriptor is called the L_{dn} (Day/Night Average Sound Level), which represents the 24-hour average sound level with a penalty for noise occurring at night. The L_{dn} computation divides the 24-hour day into two periods: daytime (7:00 am to 10:00 pm); and nighttime (10:00 pm to 7:00 am). The nighttime sound levels are assigned a 10 dB penalty prior to averaging with daytime hourly sound levels.

For highway noise environments, the average noise level during the peak hour traffic volume is approximately equal to the L_{dn}.

The effects of noise on people can be listed in three general categories:


- Subjective effects of annoyance, nuisance, dissatisfaction
- Interference with activities such as speech, sleep, and learning
- Physiological effects such as startle, hearing loss

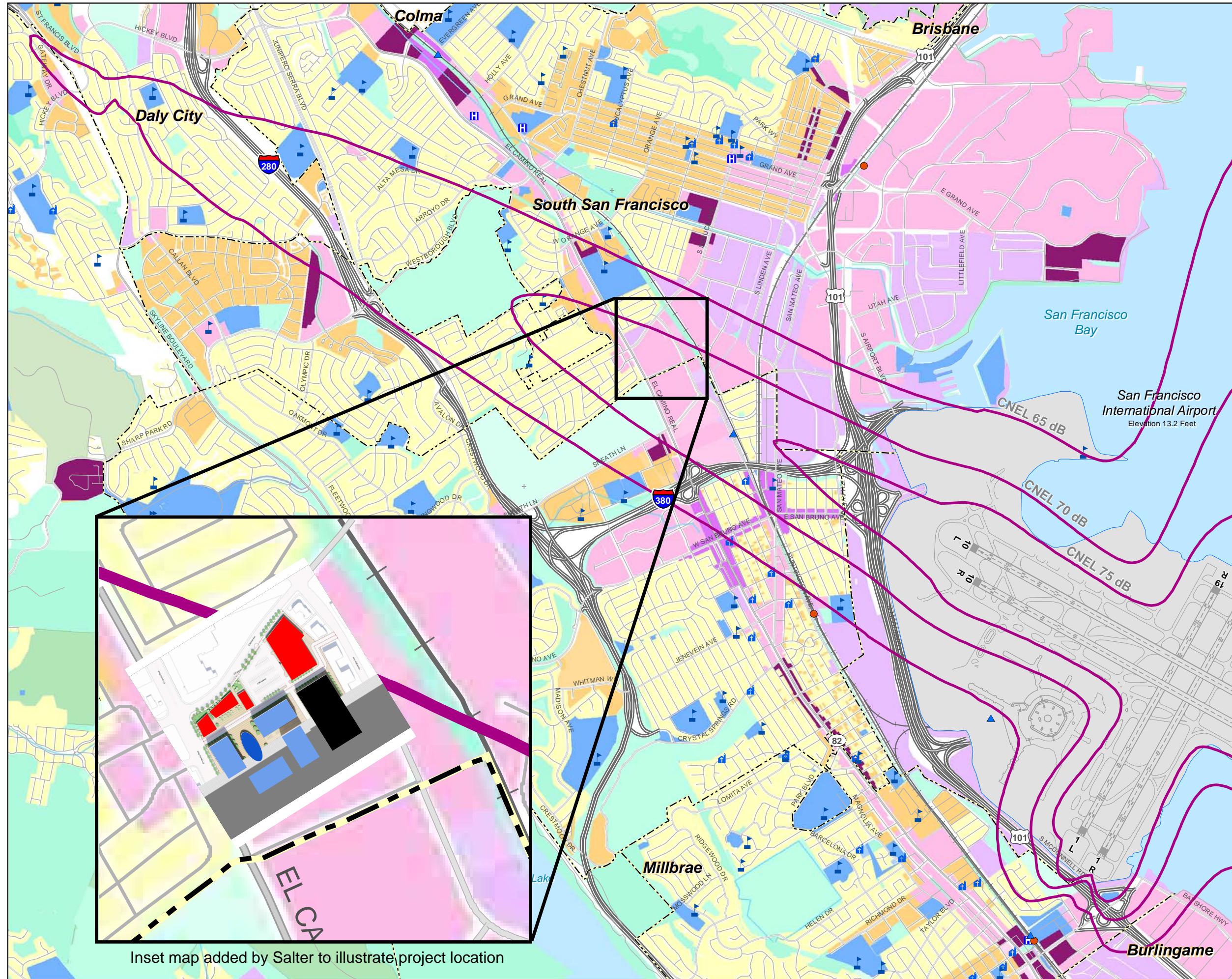
The sound levels associated with environmental noise usually produce effects only in the first two categories. Unfortunately, there has never been a completely predictable measure for the subjective effects of noise nor of the corresponding reactions of annoyance and dissatisfaction. This is primarily because of the wide variation in individual thresholds of annoyance and habituation to noise over time.

Thus, an important factor in assessing a person's subjective reaction is to compare the new noise environment to the existing noise environment. In general, the more a new noise exceeds the existing, the less acceptable the new noise will be judged.

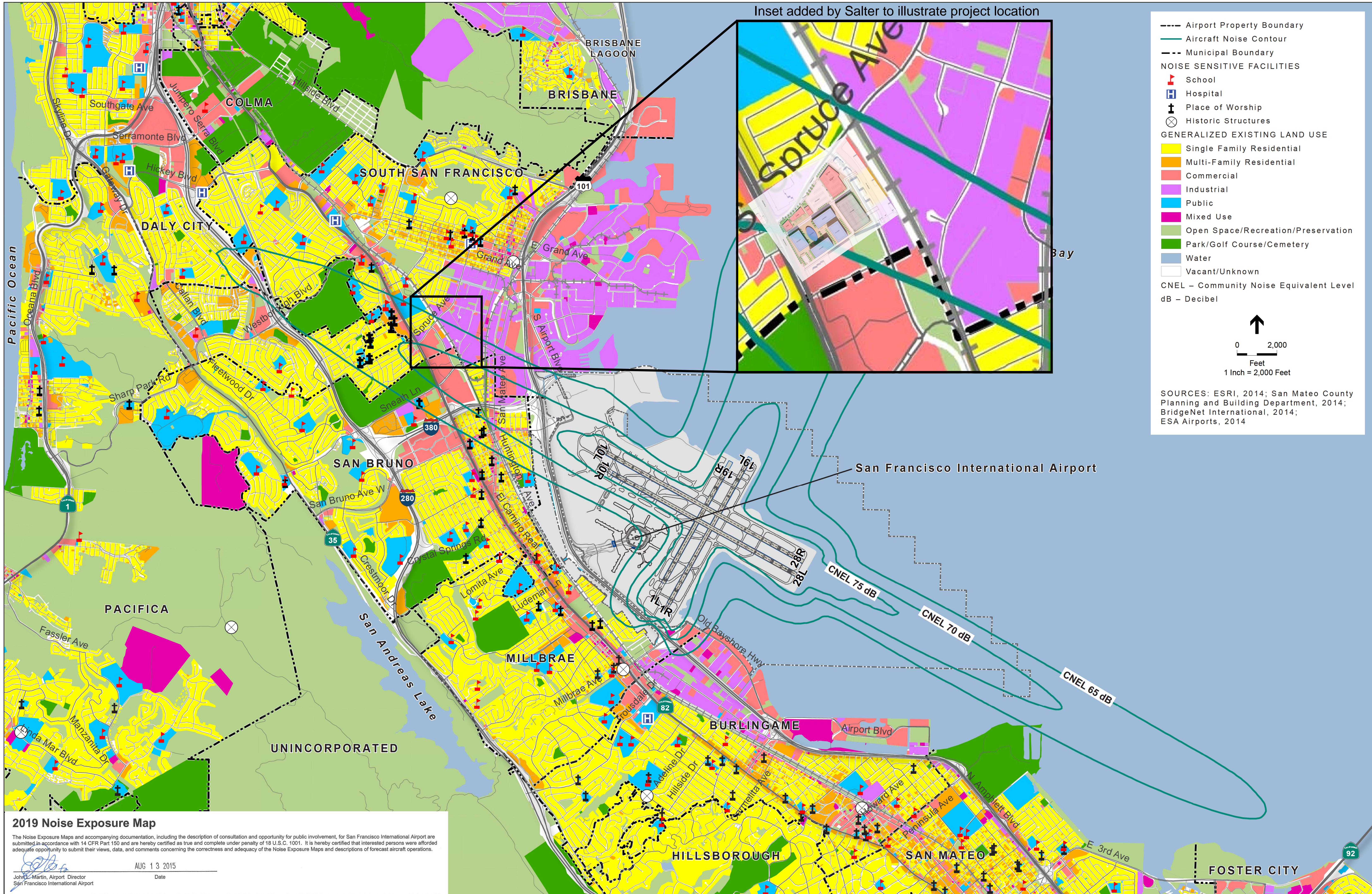
With regard to increases in noise level, knowledge of the following relationships will be helpful in understanding the quantitative sections of this report:

Except in carefully controlled laboratory experiments, a change of only 1 dB in sound level cannot be perceived. Outside of the laboratory, a 3 dB change is considered a just-noticeable difference. A change in level of at least 5 dB is required before any noticeable change in community response would be expected. A 10 dB change is subjectively heard as approximately a doubling in loudness, and would almost certainly cause an adverse community response.

(100') = DISTANCE IN FEET
BETWEEN SOURCE
AND LISTENER

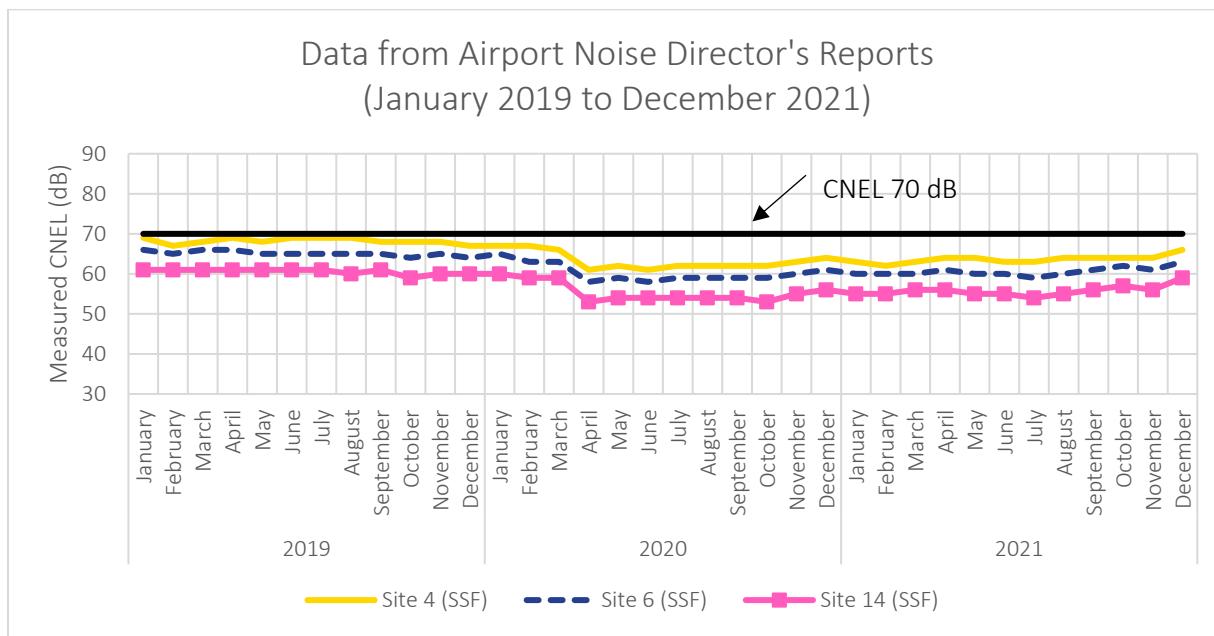
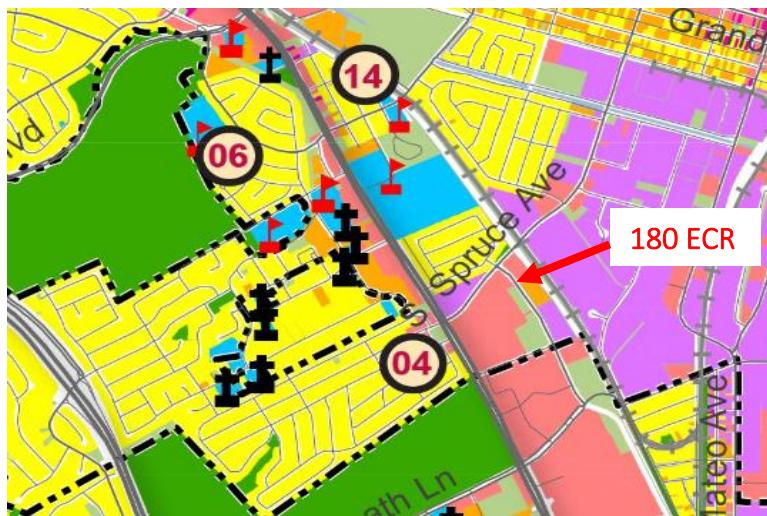

© 2004
CHARLES M. SALTER ASSOCIATES, INC.
FOR ACOUSTICAL DESIGN INFORMATION ONLY

TYPICAL SOUND LEVELS
MEASURED IN THE
ENVIRONMENT AND INDUSTRY


FIGURE A1

1107 C
11.25.03

APPENDIX B: SFO ALUCP 2020 CONTOURS, WITH PROJECT SITE INDICATED



**APPENDIX C: 2019 SFO PART 150 NOISE CONTOUR MAP, WITH PROJECT SITE
INDICATED**

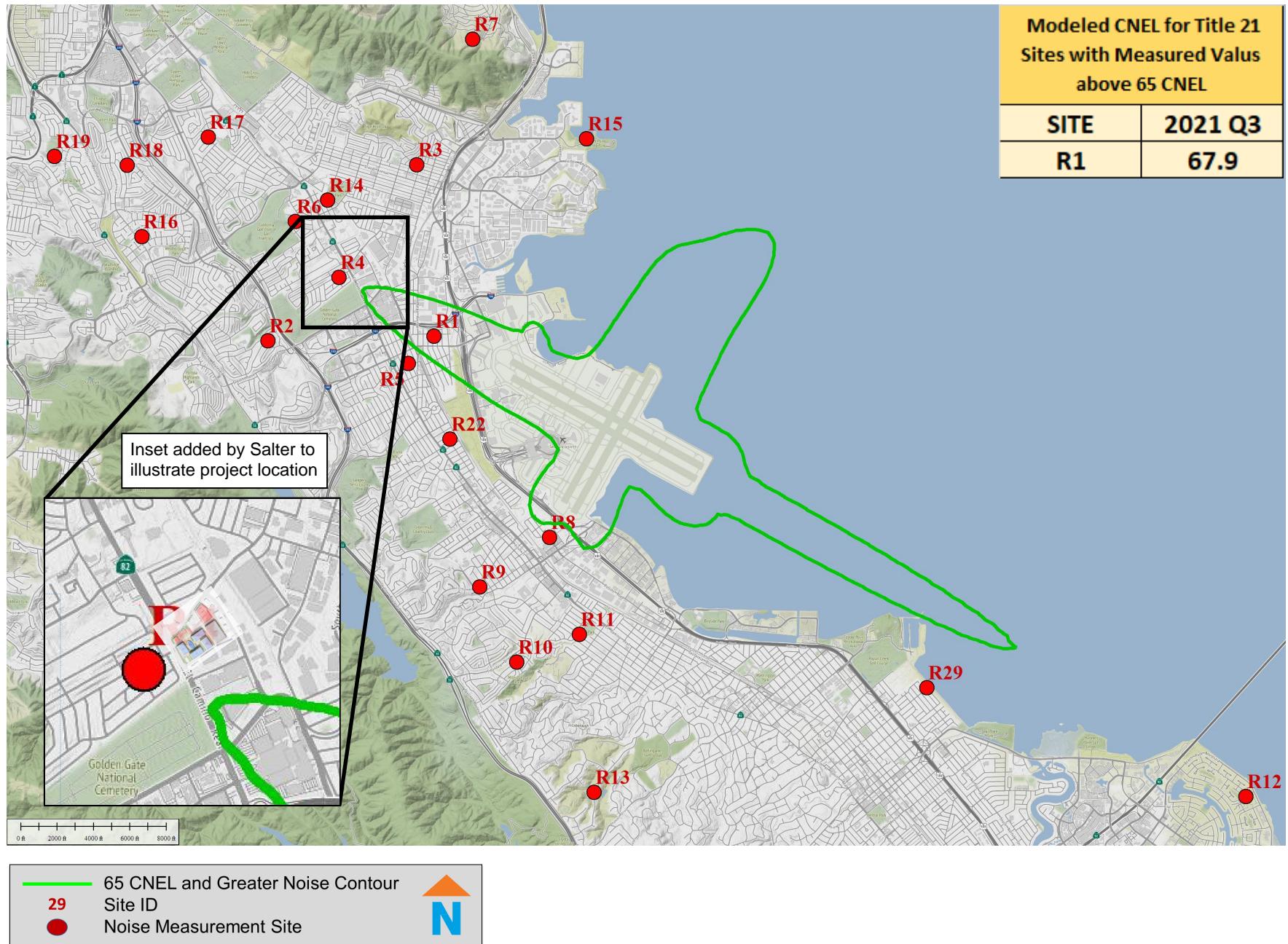
APPENDIX D: DECEMBER 2019 AIRPORT DIRECTOR'S REPORT, WITH PROJECT SITE AND NEARBY MONITORS INDICATED

Monthly Noise Monitor Data from Historical Airport Director's Reports¹²

The following noise monitors (Monitors 4, 6, and 14) appear to be closest to the site at 180 El Camino Real.

¹² Accessed from <https://www.flaysfo.com/community/noise-abatement/reports-and-resources/airport-directors-report>

The table below summarizes noise levels from December 2021 to January 2019 at the three locations closest to the 180 El Camino Real site. Noise levels were below 70 dB at all locations at all times.


Year	Month	Aircraft CNEL (dBA) from Directors Reports		
		Site 4 (SSF)	Site 6 (SSF)	Site 14 (SSF)
2021	December	69	66	61
	November	67	65	61
	October	68	66	61
	September	69	66	61
	August	68	65	61
	July	69	65	61
	June	69	65	61
	May	69	65	60
	April	68	65	61
	March	68	64	59
	February	68	65	60
	January	67	64	60
2020	December	67	65	60
	November	67	63	59
	October	66	63	59
	September	61	58	53
	August	62	59	54
	July	61	58	54
	June	62	59	54
	May	62	59	54
	April	62	59	54
	March	62	59	53
	February	63	60	55
	January	64	61	56
2019	December	63	60	55
	November	62	60	55
	October	63	60	56
	September	64	61	56
	August	64	60	55
	July	63	60	55
	June	63	59	54
	May	64	60	55
	April	64	61	56
	March	64	62	57
	February	64	61	56
	January	66	63	59

See the following figure for the 2021 3rd Quarter CNEL Project Site Overlay.

Figure 1

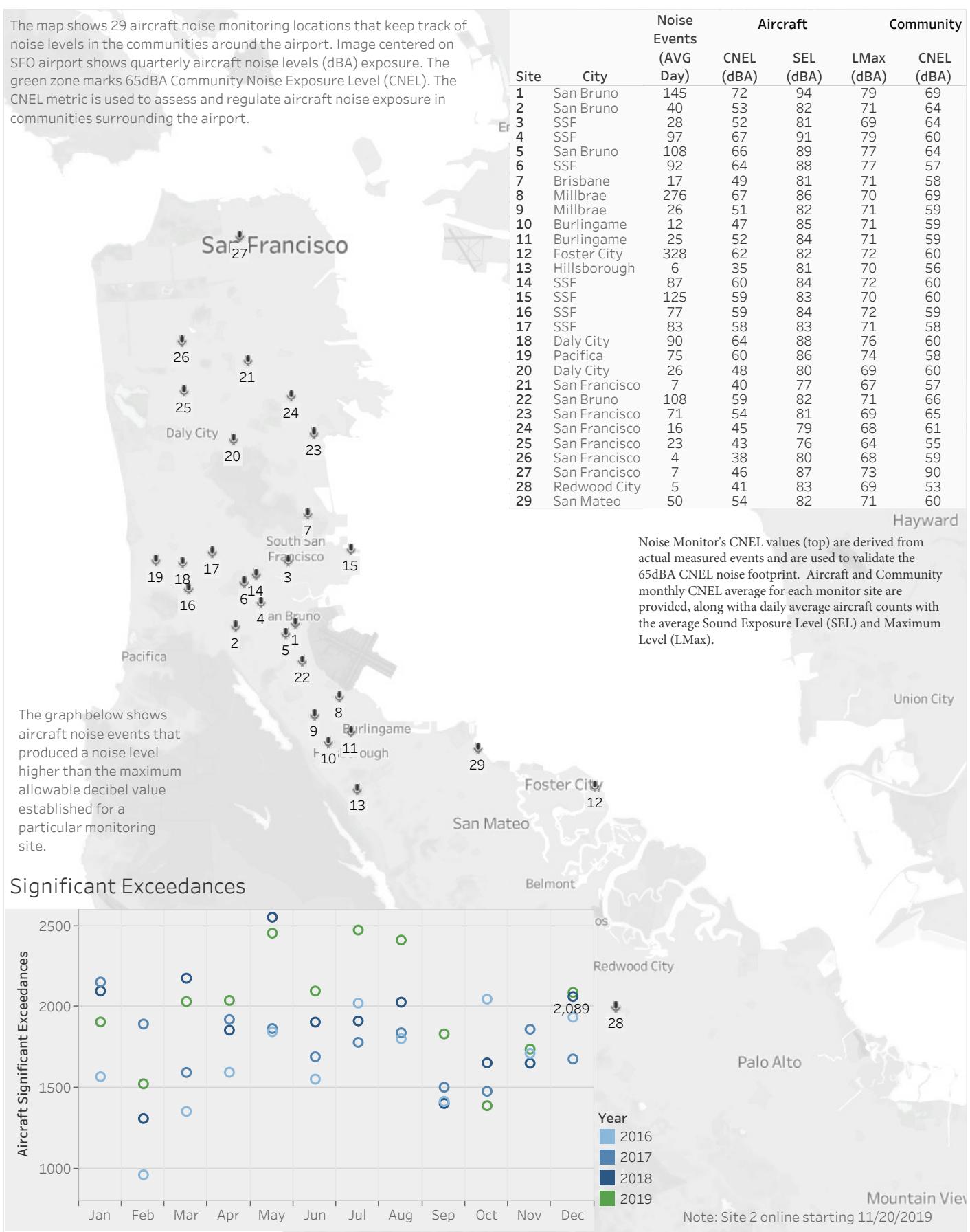
Noise Contour Map (2021 Q3)

Source: AEDT version 3c

Airport Director's Report

Presented at the August 5, 2020
Airport Community Roundtable Meeting

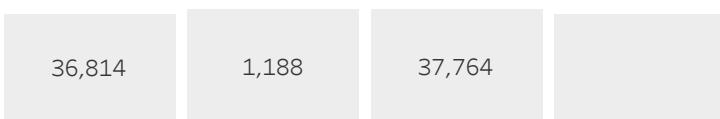
Aircraft Noise Abatement Office
December 2019

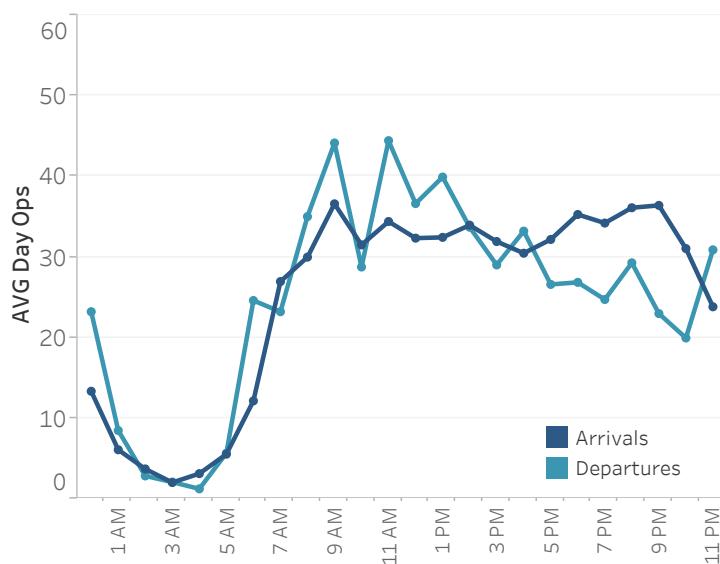


San Francisco
International
Airport

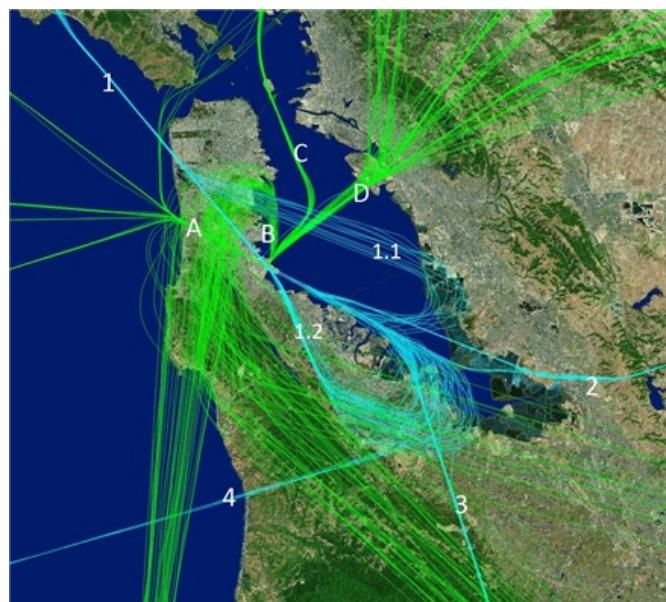
Aircraft Noise Levels

December 2019

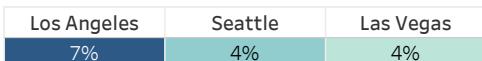

The map shows 29 aircraft noise monitoring locations that keep track of noise levels in the communities around the airport. Image centered on SFO airport shows quarterly aircraft noise levels (dBA) exposure. The green zone marks 65dBA Community Noise Exposure Level (CNEL). The CNEL metric is used to assess and regulate aircraft noise exposure in communities surrounding the airport.


Operations

December 2019


Monthly Ops AVG Daily Ops 12 Month AVG YOY Growth

December 2019 Average Day (Hourly)

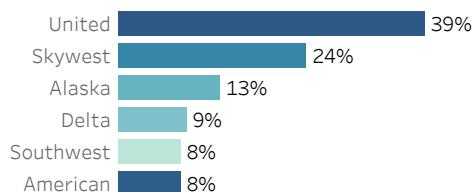


Major Arrival and Departure Routes (West Flow)

West Flow is depicted in the above image and is a predominate flow at SFO.

Top Destinations

Down the Bay vs Peninsula


Arrival Route

1. BDEGA
2. DYAMD
3. SERFR
4. OCEANIC

Departure Route

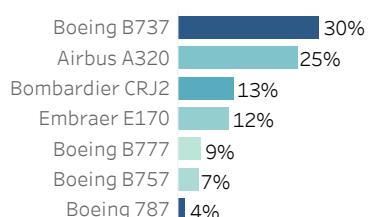
Airlines with the Most Operations

Non Airline

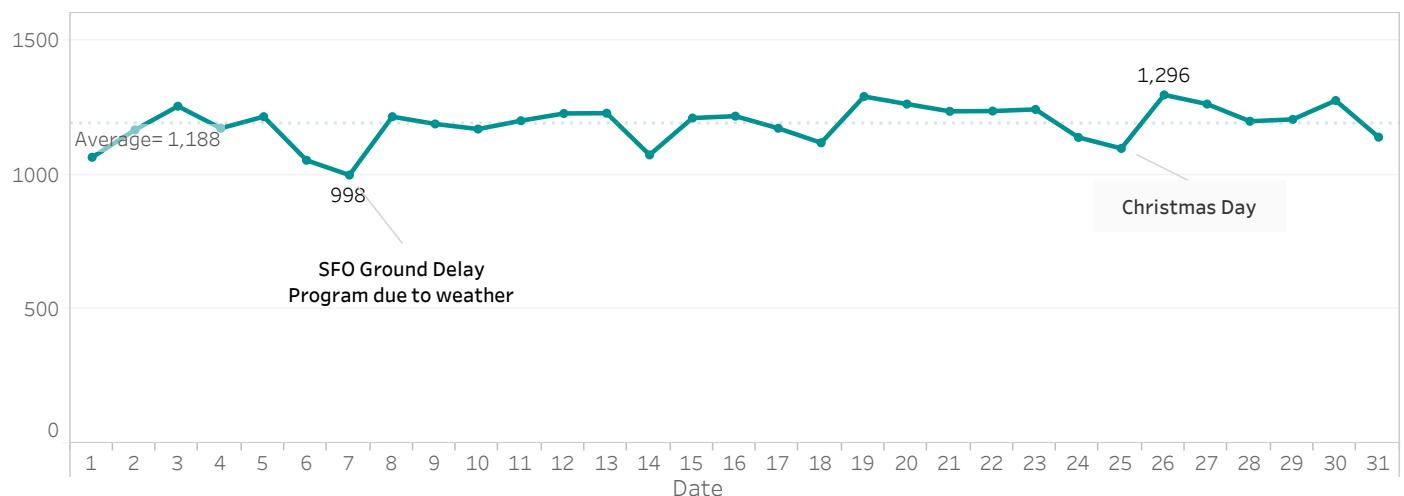
6%

Narrow Body

79%



Wide Body


16%

Most Utilized Aircraft Types

Daily Aircraft Operations

Runway Usage and Nighttime Operations

Monthly Runway usage is shown for arrivals and departures, further categorized by all hours and nighttime hours. Graph at the bottom of the page shows hourly nighttime operations for each day. Power Runup locations are depicted on the airport map with airlines nighttime power runup counts shown below. Percent [%] is rounded to the nearest whole number.

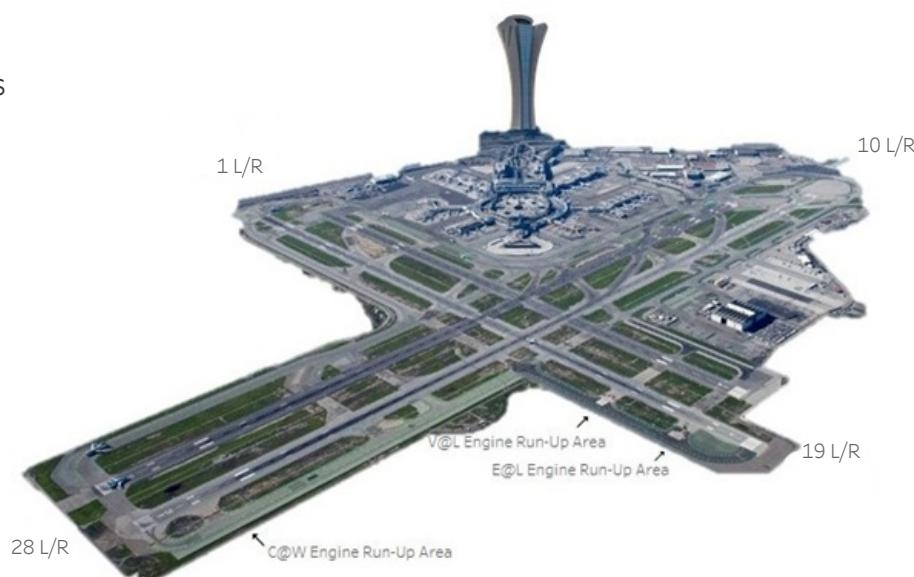
Runway Utilization

	Arrivals	Departures
01 L/R		66% 11,705
10 L/R	1% 194	19% 3,407
19 L/R	18% 3,261	1% 150
28 L/R	80% 14,188	13% 2,373

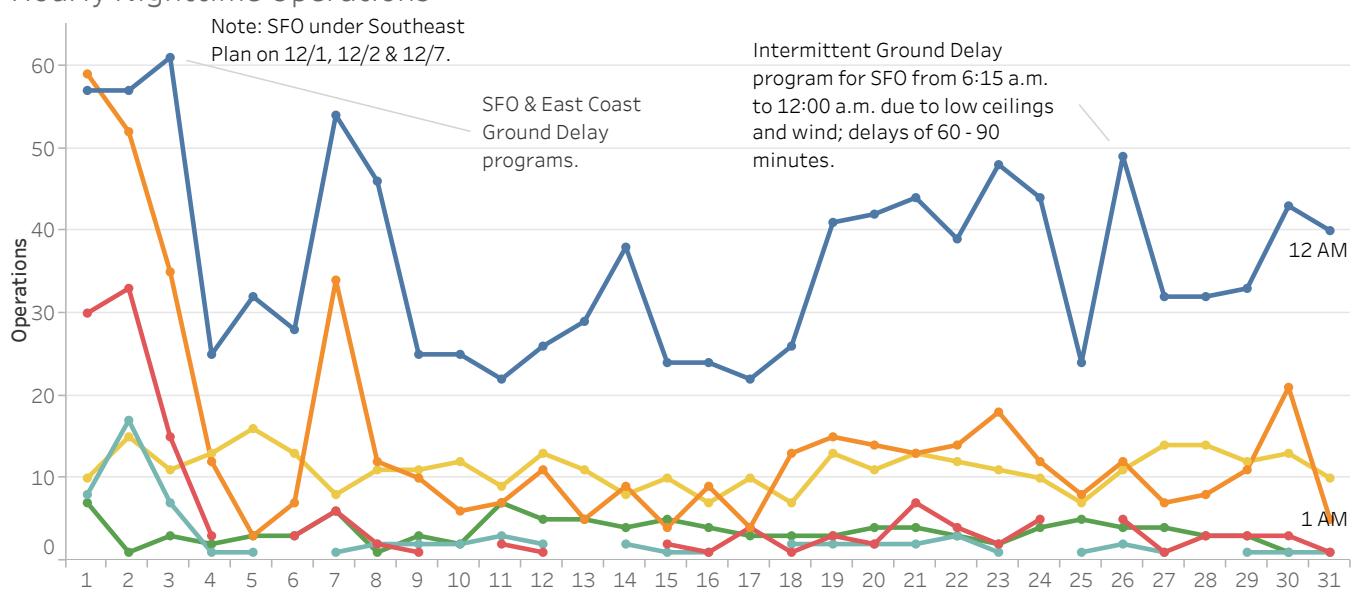
Late Night Preferential Runway Use (1 am - 6 am)

	Departures
10 L/R	39% 200
01 L/R	41% 208
28 L/R	20% 99

Runway Utilization


Arrivals	28L	28R
28L	45%	55%
Night (10pm-7am)	32%	68%

Nighttime Power Run-Ups


10pm-7am

Alaska Airlines 7
American Airlines 6
United Airlines 8

A power runup is a procedure used to test an aircraft engine after maintenance is completed. This is done to ensure safe operating standards prior to returning the aircraft to service. The Aircraft power settings range from idle to full power and may vary in duration.

Hourly Nighttime Operations

Noise Reports

Noise Reporters / Noise Reports

	Reporters	Reports
Atherton	5	998
Belmont	5	194
Brisbane	24	1,468
Burlingame	5	77
Daly City	12	1,057
El Granada	2	1,073
Foster City	12	551
Half Moon Bay	2	9
Menlo Park	22	1,930
Millbrae	7	39
Montara	1	364
Moss Beach	1	6
Pacifica	25	3,205
Portola Valley	26	6,994
Redwood City	17	1,477
San Bruno	7	113
San Carlos	1	34
San Francisco	44	5,593
San Mateo	24	1,035
South San Fra..	10	155
Woodside	9	2,887
Alameda	5	106
Aptos	6	241
Ben Lomond	3	16
Berkeley	14	3,240
Bonny Doon	2	27
Boulder Creek	7	123
Brookdale	1	1
Capitola	14	1,361
Carmel Valley	2	26
Castro Valley	1	1
Cupertino	1	1,536
Danville	2	32
East Palo Alto	2	47
Emerald Hills	8	2,600
Felton	7	370
Fremont	1	309
Hayward	1	355
Kensington	1	3
La Selva Beach	1	5
Lafayette	1	1
Los Altos	95	13,459
Los Altos Hills	23	8,612
Los Gatos	86	10,196
Moraga	4	552
Morgan Hill	2	27
Mountain View	30	3,053
Oakland	31	7,491
Orinda	3	36
Palo Alto	157	34,551
Penngrove	1	11
Richmond	6	4,037
San Jose	1	1
Santa Cruz	94	14,101
Saratoga	2	218
Scotts Valley	59	6,189
Soquel	56	8,744
Stanford	4	791
Sunnyvale	8	788
Watsonville	1	193
Grand Total	1,004	152,709

Reporters
Annual AVG

1,138

Reports
Annual AVG

177,683

New
Reporters

74

New
Reporters
Top City

San Francisco

Furthest
Report

88 miles

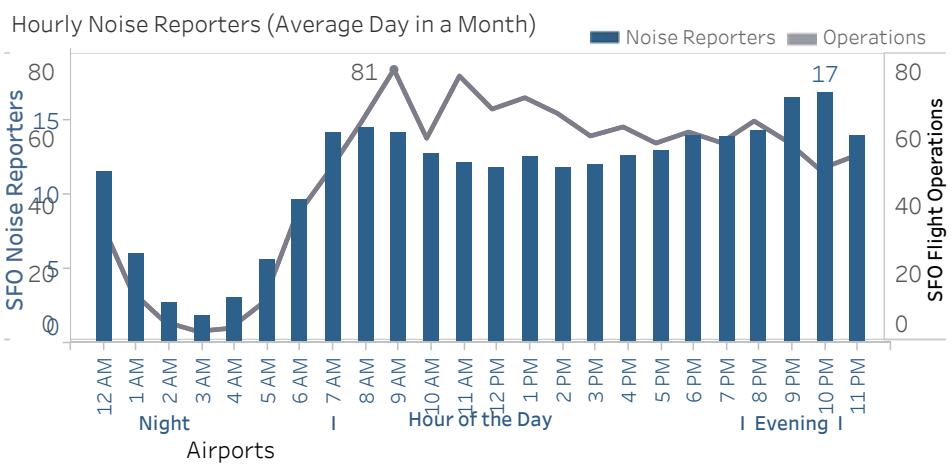
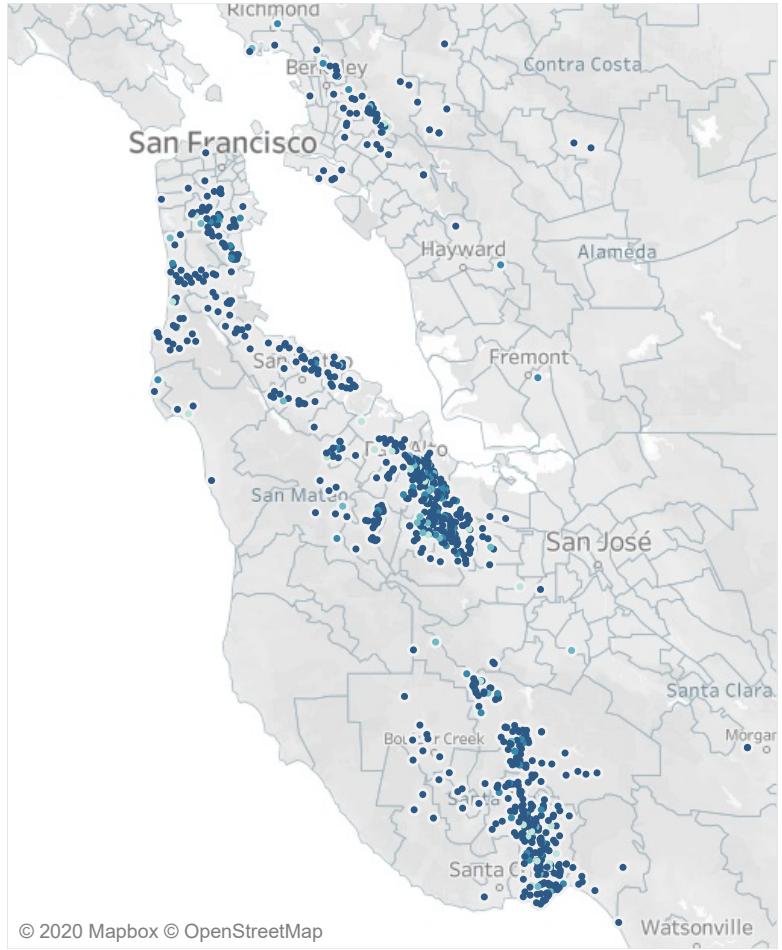
Reports per
SFO
Operation

4

Top Aircraft
Types

B737

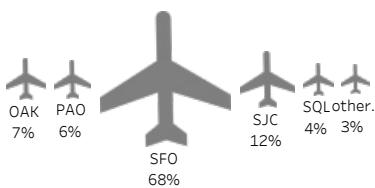
E750



Top Flight
Numbers

UAL201

ASA201

ASA193


Noise Reporters Location Map

Notes: Address validation Relies on USPS-provided ZIP Code look up table and USPS-specified default city values.

99% of noise reports correlate to a origin/destination airport.

Source: SFO Intl Airport Noise Monitoring System

